Cambridge International Mathematics

(Tina Sui) #1
Exponents and surds (Chapter 6) 129

6 Express the following in simplest form, without brackets:

a (2b^4 )^3 b

μ
3
x^2 y

¶ 2
c (5a^4 b)^2 d

μ
m^3
2 n^2

¶ 4

e

μ
3 a^3
b^5

¶ 3
f (2m^3 n^2 )^5 g

μ
4 a^4
b^2

¶ 2
h (5x^2 y^3 )^3

Consider

23

23

which is obviously 1.

Using the exponent law for division,

23

23

=2^3 ¡^3 =2^0

We therefore conclude that 20 =1.

In general, we can state thezero index law: a^0 =1 for all a 6 =0.

Now consider

24

27

which is

2 £ 2 £ 2 £ 2

2 £ 2 £ 2 £ 2 £ 2 £ 2 £ 2

=

1

23

Using the exponent law of division,

24

27

=2^4 ¡^7 =2¡^3

Consequently, 2 ¡^3 =

1

23

, which means that 2 ¡^3 and 23 arereciprocalsof each other.

C ZERO AND NEGATIVE INDICES [1.9, 2.4]


1

1

In general, we can state thenegative index law:

Ifais any non-zero number andnis an integer, then a¡n=

1

an

.

This means thatananda¡narereciprocalsof one another.

In particular notice that a¡^1 =

1

a

.

Using the negative index law,

¡ 2
3

¢¡ 4
=

1

¡ 2
3

¢ 4

=1¥

24

34

=1£

34

24

=

¡ 3
2

¢ 4

So, in general we can see that:

³a

b

́¡n
=

μ
b
a

¶n
provided a 6 =0, b 6 =0.

IGCSE01
cyan magenta yellow black

(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\IGCSE01\IG01_06\129IGCSE01_06.CDR Thursday, 18 September 2008 12:18:04 PM PETER

Free download pdf