Exponents and surds (Chapter 6) 1296 Express the following in simplest form, without brackets:a (2b^4 )^3 bμ
3
x^2 y¶ 2
c (5a^4 b)^2 dμ
m^3
2 n^2¶ 4eμ
3 a^3
b^5¶ 3
f (2m^3 n^2 )^5 gμ
4 a^4
b^2¶ 2
h (5x^2 y^3 )^3Consider23
23
which is obviously 1.Using the exponent law for division,23
23
=2^3 ¡^3 =2^0
We therefore conclude that 20 =1.In general, we can state thezero index law: a^0 =1 for all a 6 =0.Now consider24
27
which is2 £ 2 £ 2 £ 2
2 £ 2 £ 2 £ 2 £ 2 £ 2 £ 2
=
1
23
Using the exponent law of division,24
27
=2^4 ¡^7 =2¡^3
Consequently, 2 ¡^3 =1
23
, which means that 2 ¡^3 and 23 arereciprocalsof each other.C ZERO AND NEGATIVE INDICES [1.9, 2.4]
11In general, we can state thenegative index law:Ifais any non-zero number andnis an integer, then a¡n=1
an.
This means thatananda¡narereciprocalsof one another.In particular notice that a¡^1 =1
a.
Using the negative index law,¡ 2
3¢¡ 4
=1
¡ 2
3¢ 4=1¥
24
34
=1£
34
24
=
¡ 3
2¢ 4So, in general we can see that:³ab́¡n
=μ
b
a¶n
provided a 6 =0, b 6 =0.IGCSE01
cyan magenta yellow black(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\IGCSE01\IG01_06\129IGCSE01_06.CDR Thursday, 18 September 2008 12:18:04 PM PETER