Exponents and surds (Chapter 6) 129
6 Express the following in simplest form, without brackets:
a (2b^4 )^3 b
μ
3
x^2 y
¶ 2
c (5a^4 b)^2 d
μ
m^3
2 n^2
¶ 4
e
μ
3 a^3
b^5
¶ 3
f (2m^3 n^2 )^5 g
μ
4 a^4
b^2
¶ 2
h (5x^2 y^3 )^3
Consider
23
23
which is obviously 1.
Using the exponent law for division,
23
23
=2^3 ¡^3 =2^0
We therefore conclude that 20 =1.
In general, we can state thezero index law: a^0 =1 for all a 6 =0.
Now consider
24
27
which is
2 £ 2 £ 2 £ 2
2 £ 2 £ 2 £ 2 £ 2 £ 2 £ 2
=
1
23
Using the exponent law of division,
24
27
=2^4 ¡^7 =2¡^3
Consequently, 2 ¡^3 =
1
23
, which means that 2 ¡^3 and 23 arereciprocalsof each other.
C ZERO AND NEGATIVE INDICES [1.9, 2.4]
1
1
In general, we can state thenegative index law:
Ifais any non-zero number andnis an integer, then a¡n=
1
an
.
This means thatananda¡narereciprocalsof one another.
In particular notice that a¡^1 =
1
a
.
Using the negative index law,
¡ 2
3
¢¡ 4
=
1
¡ 2
3
¢ 4
=1¥
24
34
=1£
34
24
=
¡ 3
2
¢ 4
So, in general we can see that:
³a
b
́¡n
=
μ
b
a
¶n
provided a 6 =0, b 6 =0.
IGCSE01
cyan magenta yellow black
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\IGCSE01\IG01_06\129IGCSE01_06.CDR Thursday, 18 September 2008 12:18:04 PM PETER