Exponents and surds (Chapter 6) 131
10 000 = 10^4
1000 = 10^3
100 = 10^2
10 = 10^1
1=10^0
1
10 =10
¡ 1
1
100 =10
¡ 2
1
1000 =10
¡ 3
Consider the pattern alongside. Notice that each time we divide by
10 , theexponentorpowerof 10 decreases by one.
We can use this pattern to simplify the writing of very large and very small numbers.
For example, 5 000 000
=5£1 000 000
=5£ 106
and 0 :000 003
=
3
1 000 000
=
3
1
£
1
1 000 000
=3£ 10 ¡^6
STANDARD FORM
Standard form(orscientific notation) involves writing any given number asa number between 1
and 10 , multiplied by aninteger power of 10 ,
i.e., a£ 10 n where 16 a< 10 and n 2 Z:
Example 11 Self Tutor
Write in standard form: a 37 600 b 0 :000 86
a 37 600 = 3: 76 £10 000
=3: 76 £ 104
fshift decimal point 4 places to the left and£10 000g
b 0 :000 86 = 8: 6 ¥ 104
=8: 6 £ 10 ¡^4
fshift decimal point 4 places to the right and¥10 000g
Example 12 Self Tutor
Write as an ordinary number:
a 3 : 2 £ 102 b 5 : 76 £ 10 ¡^5
a 3 : 2 £ 102
=3: 20 £ 100
= 320
b 5 : 76 £ 10 ¡^5
= 000005: 76 ¥ 105
=0:000 057 6
D STANDARD FORM [1.9]
÷ 10
÷ 10
÷ 10
- 1
- 1
- 1
÷ 10
÷ 10
÷ 10
÷ 10
- 1
- 1
- 1
- 1
- 1
IGCSE01
cyan magenta yellow black
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
y:\HAESE\IGCSE01\IG01_06\131IGCSE01_06.CDR Friday, 10 October 2008 9:08:28 AM PETER