Cambridge International Mathematics

(Tina Sui) #1
Exponents and surds (Chapter 6) 131

10 000 = 10^4

1000 = 10^3

100 = 10^2

10 = 10^1

1=10^0

1
10 =10

¡ 1
1
100 =10

¡ 2
1
1000 =10

¡ 3

Consider the pattern alongside. Notice that each time we divide by
10 , theexponentorpowerof 10 decreases by one.

We can use this pattern to simplify the writing of very large and very small numbers.

For example, 5 000 000
=5£1 000 000
=5£ 106

and 0 :000 003

=

3

1 000 000

=

3

1

£

1

1 000 000

=3£ 10 ¡^6

STANDARD FORM


Standard form(orscientific notation) involves writing any given number asa number between 1
and 10 , multiplied by aninteger power of 10 ,
i.e., a£ 10 n where 16 a< 10 and n 2 Z:

Example 11 Self Tutor


Write in standard form: a 37 600 b 0 :000 86

a 37 600 = 3: 76 £10 000
=3: 76 £ 104

fshift decimal point 4 places to the left and£10 000g

b 0 :000 86 = 8: 6 ¥ 104
=8: 6 £ 10 ¡^4

fshift decimal point 4 places to the right and¥10 000g

Example 12 Self Tutor


Write as an ordinary number:
a 3 : 2 £ 102 b 5 : 76 £ 10 ¡^5

a 3 : 2 £ 102
=3: 20 £ 100
= 320

b 5 : 76 £ 10 ¡^5
= 000005: 76 ¥ 105
=0:000 057 6

D STANDARD FORM [1.9]


÷ 10
÷ 10
÷ 10


  • 1

  • 1

  • 1


÷ 10
÷ 10
÷ 10

÷ 10


  • 1

    • 1

      • 1





  • 1


IGCSE01
cyan magenta yellow black

(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
y:\HAESE\IGCSE01\IG01_06\131IGCSE01_06.CDR Friday, 10 October 2008 9:08:28 AM PETER

Free download pdf