Exponents and surds (Chapter 6) 13110 000 = 10^4
1000 = 10^3
100 = 10^2
10 = 10^1
1=10^0
1
10 =10¡ 1
1
100 =10¡ 2
1
1000 =10¡ 3Consider the pattern alongside. Notice that each time we divide by
10 , theexponentorpowerof 10 decreases by one.We can use this pattern to simplify the writing of very large and very small numbers.For example, 5 000 000
=5£1 000 000
=5£ 106and 0 :000 003=3
1 000 000
=
3
1
£
1
1 000 000
=3£ 10 ¡^6
STANDARD FORM
Standard form(orscientific notation) involves writing any given number asa number between 1
and 10 , multiplied by aninteger power of 10 ,
i.e., a£ 10 n where 16 a< 10 and n 2 Z:Example 11 Self Tutor
Write in standard form: a 37 600 b 0 :000 86a 37 600 = 3: 76 £10 000
=3: 76 £ 104fshift decimal point 4 places to the left and£10 000gb 0 :000 86 = 8: 6 ¥ 104
=8: 6 £ 10 ¡^4fshift decimal point 4 places to the right and¥10 000gExample 12 Self Tutor
Write as an ordinary number:
a 3 : 2 £ 102 b 5 : 76 £ 10 ¡^5a 3 : 2 £ 102
=3: 20 £ 100
= 320b 5 : 76 £ 10 ¡^5
= 000005: 76 ¥ 105
=0:000 057 6D STANDARD FORM [1.9]
÷ 10
÷ 10
÷ 10- 1
- 1
- 1
÷ 10
÷ 10
÷ 10÷ 10- 1
- 1
- 1
- 1
- 1
IGCSE01
cyan magenta yellow black(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
y:\HAESE\IGCSE01\IG01_06\131IGCSE01_06.CDR Friday, 10 October 2008 9:08:28 AM PETER