Exponents and surds (Chapter 6) 137Discovery Properties of surds
#endboxedheadingNotice thatp
4 £9=p
36 = 6 andp
4 £p
9=2£3=6, which suggests thatp
4 £p
9=p
4 £ 9 :Also,r
36
4=
p
9=3 andp
36
p
4=
6
2
=3, which suggests thatp
36
p
4=
r
36
4.
What to do:
Test the following possible properties or rules for surds by substituting different values ofaandb. Use
your calculator to evaluate the results.1
p
a£p
b=p
ab for all a> 0 ,b> 0.2
qa
b=
p
a
p
bfor all a> 0 ,b> 0.3
p
a+b=p
a+p
b for all a> 0 ,b> 0.4
p
a¡b=p
a¡p
b for all a> 0 ,b> 0.You should have discovered the following properties of surds:²
p
a£p
b=p
a£b for a> 0 , b> 0²
p
a
p
b=
r
a
bfor a> 0 , b> 0However, in general it is not true thatp
a+b=p
a+p
b or thatp
a¡b=p
a¡p
b:Example 18 Self Tutor
Write in simplest form:
ap
3 £p
2 b 2p
5 £ 3p
2ap
3 £p
2
=p
3 £ 2
=p
6b 2p
5 £ 3p
2
=2£ 3 £p
5 £p
2
=6£p
5 £ 2
=6p
10F PROPERTIES OF SURDS [1.10]
IGCSE01
cyan magenta yellow black(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\IGCSE01\IG01_06\137IGCSE01_06.CDR Monday, 15 September 2008 3:02:50 PM PETER