Exponents and surds (Chapter 6) 1392 Simplify:
a 3p
3 £ 2p
2 b 2p
3 £ 3p
5 cp
2 £p
3 £p
5
dp
3 £p
2 £ 2p
2 e ¡ 3p
2 £(p
2)^3 f (3p
2)^3 £(p
3)^33 Simplify:ap
8
p
2bp
2
p
8cp
18
p
2dp
2
p
18ep
20
p
5fp
5
p
20gp
27
p
3hp
18
p
3ip
3
p
30jp
50
p
2k2
p
6
p
24l5
p
75
p
34 Write the following in the form kp
2 :
ap
8 bp
18 cp
50 dp
98ep
200 fp
288 gp
20 000 hq
1
25 Write the following in the form kp
3 :ap
12 bp
27 cp
75 dq
1
36 Write the following in the form kp
5 :ap
20 bp
45 cp
125 dq
1
57aFind:
ip
16 +p
9 iip
16 + 9 iiip
25 ¡p
9 ivp
25 ¡ 9
b Copy and complete: In general,p
a+b 6 =:::::: andp
a¡b 6 =::::::
8 Write the following in simplest surd form:
ap
24 bp
50 cp
54 dp
40 ep
56 fp
63
gp
52 hp
44 ip
60 jp
90 kp
96 lp
68
mp
175 np
162 op
128 pp
700
9 Write the following in simplest surd form:aq
5
9 bq
18
4 cq
12
16 dq
75
36The rules for expanding brackets involving surds are identical to those for ordinary algebra.We can thus use:
a(b+c)=ab+ac
(a+b)(c+d)=ac+ad+bc+bd
(a+b)^2 =a^2 +2ab+b^2
(a¡b)^2 =a^2 ¡ 2 ab+b^2
(a+b)(a¡b)=a^2 ¡b^2G MULTIPLICATION OF SURDS [1.10]
IGCSE01
cyan magenta yellow black(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\IGCSE01\IG01_06\139IGCSE01_06.CDR Monday, 15 September 2008 3:06:19 PM PETER