Exponents and surds (Chapter 6) 139
2 Simplify:
a 3
p
3 £ 2
p
2 b 2
p
3 £ 3
p
5 c
p
2 £
p
3 £
p
5
d
p
3 £
p
2 £ 2
p
2 e ¡ 3
p
2 £(
p
2)^3 f (3
p
2)^3 £(
p
3)^3
3 Simplify:
a
p
8
p
2
b
p
2
p
8
c
p
18
p
2
d
p
2
p
18
e
p
20
p
5
f
p
5
p
20
g
p
27
p
3
h
p
18
p
3
i
p
3
p
30
j
p
50
p
2
k
2
p
6
p
24
l
5
p
75
p
3
4 Write the following in the form k
p
2 :
a
p
8 b
p
18 c
p
50 d
p
98
e
p
200 f
p
288 g
p
20 000 h
q
1
2
5 Write the following in the form k
p
3 :
a
p
12 b
p
27 c
p
75 d
q
1
3
6 Write the following in the form k
p
5 :
a
p
20 b
p
45 c
p
125 d
q
1
5
7aFind:
i
p
16 +
p
9 ii
p
16 + 9 iii
p
25 ¡
p
9 iv
p
25 ¡ 9
b Copy and complete: In general,
p
a+b 6 =:::::: and
p
a¡b 6 =::::::
8 Write the following in simplest surd form:
a
p
24 b
p
50 c
p
54 d
p
40 e
p
56 f
p
63
g
p
52 h
p
44 i
p
60 j
p
90 k
p
96 l
p
68
m
p
175 n
p
162 o
p
128 p
p
700
9 Write the following in simplest surd form:
a
q
5
9 b
q
18
4 c
q
12
16 d
q
75
36
The rules for expanding brackets involving surds are identical to those for ordinary algebra.
We can thus use:
a(b+c)=ab+ac
(a+b)(c+d)=ac+ad+bc+bd
(a+b)^2 =a^2 +2ab+b^2
(a¡b)^2 =a^2 ¡ 2 ab+b^2
(a+b)(a¡b)=a^2 ¡b^2
G MULTIPLICATION OF SURDS [1.10]
IGCSE01
cyan magenta yellow black
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\IGCSE01\IG01_06\139IGCSE01_06.CDR Monday, 15 September 2008 3:06:19 PM PETER