142 Exponents and surds (Chapter 6)When an expression involves division by a surd, we can write the expression with aninteger denominator
which doesnotcontain surds.If the denominator contains a simple surd such asp
athen we use the rulep
a£p
a=a:For example:6
p
3can be written as6
p
3£
p
3
p
3since we are really just multiplying
the original fraction by 1.6
p
3£
p
3
p
3then simplifies to6
p
3
3
or 2p
3.Example 27 Self Tutor
Express with integer denominator: a7
p
3b10
p
5c10
2
p
2a7
p
3=7
p
3£
p
3
p
3=7
p
3
3b10
p
5=10
p
5£
p
5
p
5
=^105p
5
=2p
5c10
2
p
2=10
2
p
2£
p
2
p
2=10
p
2
4=5
p
2
2Example 28 Self Tutor
Express1
3+
p
2with integer denominator.1
3+
p
2=
μ
1
3+p
2¶μ
3 ¡p
2
3 ¡p
2¶=
3 ¡
p
2
32 ¡(p
2)^2fusing (a+b)(a¡b)=a^2 ¡b^2 g=
3 ¡
p
2
7H DIVISION BY SURDS [1.10]
We are really
multiplying by one,
which does not change
the value of the
original expression.If the denominator has the form a+p
b then we can remove the surd from the denominator by multiplying
both the numerator and the denominator by itsradical conjugate a¡p
b. This produces a rational
denominator, so the process is calledrationalisationof the denominator.IGCSE01
cyan magenta yellow black(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
y:\HAESE\IGCSE01\IG01_06\142IGCSE01_06.CDR Friday, 10 October 2008 9:10:01 AM PETER