Cambridge International Mathematics

(Tina Sui) #1

Challenge #endboxedheading


146 Exponents and surds (Chapter 6)

Discovery Continued square roots#endboxedheading


X=

s

2+

r
2+

q
2+

p
2+

p
2+:::::: is an example of a
continued square root.
Some continued square roots have actual values which are integers.

1 Use your calculator to show that

p
2 ¼ 1 : 41421
p
2+

p
2 ¼ 1 : 84776
q
2+

p
2+

p
2 ¼ 1 : 96157 :

2 Find the values, correct to 6 decimal places, of:

a

r
2+

q
2+

p
2+

p
2 b

s

2+

r
2+

q
2+

p
2+

p
2

3 Continue the process and hence predict the actual value ofX.
4 Use algebra to find the exact value ofX.
Hint: FindX^2 in terms ofX, and solve by inspection.
5 Can you find a continued square root whose actual value is 3?

1 Find

s
3+2

p
2
3 ¡ 2

p
2

giving your answer in the form a+b

p
2 where a,b 2 Q.

2 If x=

p
5 ¡

p
3 , findx^2 andx^4. Hence find the value of x^4 ¡ 16 x^2.
Copy and complete: x=

p
5 ¡

p
3 is one of the solutions of the equation x^4 ¡ 16 x^2 =0

3aWe know that in general,

p
a+b 6 =

p
a+

p
b
Deduce that if

p
a+b=

p
a+

p
b then at least one ofaorbis 0.
b What can be deduced aboutaandbif

p
a¡b=

p

p
b?

4aFind the value of

μ
1+

p
5
2

¶n
¡

μ
1 ¡

p
5
2

¶n
for n=1, 2 , 3 and 4.

b What do you suspect about

μ
1+

p
5
2

¶n
¡

μ
1 ¡

p
5
2

¶n
for all n 2 Z+?

What to do:

IGCSE01
cyan magenta yellow black

(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\IGCSE01\IG01_06\146IGCSE01_06.cdr Friday, 31 October 2008 9:51:20 AM PETER

Free download pdf