Challenge #endboxedheading
146 Exponents and surds (Chapter 6)
Discovery Continued square roots#endboxedheading
X=
s
2+
r
2+
q
2+
p
2+
p
2+:::::: is an example of a
continued square root.
Some continued square roots have actual values which are integers.
1 Use your calculator to show that
p
2 ¼ 1 : 41421
p
2+
p
2 ¼ 1 : 84776
q
2+
p
2+
p
2 ¼ 1 : 96157 :
2 Find the values, correct to 6 decimal places, of:
a
r
2+
q
2+
p
2+
p
2 b
s
2+
r
2+
q
2+
p
2+
p
2
3 Continue the process and hence predict the actual value ofX.
4 Use algebra to find the exact value ofX.
Hint: FindX^2 in terms ofX, and solve by inspection.
5 Can you find a continued square root whose actual value is 3?
1 Find
s
3+2
p
2
3 ¡ 2
p
2
giving your answer in the form a+b
p
2 where a,b 2 Q.
2 If x=
p
5 ¡
p
3 , findx^2 andx^4. Hence find the value of x^4 ¡ 16 x^2.
Copy and complete: x=
p
5 ¡
p
3 is one of the solutions of the equation x^4 ¡ 16 x^2 =0
3aWe know that in general,
p
a+b 6 =
p
a+
p
b
Deduce that if
p
a+b=
p
a+
p
b then at least one ofaorbis 0.
b What can be deduced aboutaandbif
p
a¡b=
p
a¡
p
b?
4aFind the value of
μ
1+
p
5
2
¶n
¡
μ
1 ¡
p
5
2
¶n
for n=1, 2 , 3 and 4.
b What do you suspect about
μ
1+
p
5
2
¶n
¡
μ
1 ¡
p
5
2
¶n
for all n 2 Z+?
What to do:
IGCSE01
cyan magenta yellow black
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\IGCSE01\IG01_06\146IGCSE01_06.cdr Friday, 31 October 2008 9:51:20 AM PETER