Challenge #endboxedheading
146 Exponents and surds (Chapter 6)Discovery Continued square roots#endboxedheading
X=
s2+r
2+q
2+p
2+p
2+:::::: is an example of a
continued square root.
Some continued square roots have actual values which are integers.1 Use your calculator to show thatp
2 ¼ 1 : 41421
p
2+p
2 ¼ 1 : 84776
q
2+p
2+p
2 ¼ 1 : 96157 :2 Find the values, correct to 6 decimal places, of:ar
2+q
2+p
2+p
2 bs2+r
2+q
2+p
2+p
23 Continue the process and hence predict the actual value ofX.
4 Use algebra to find the exact value ofX.
Hint: FindX^2 in terms ofX, and solve by inspection.
5 Can you find a continued square root whose actual value is 3?1 Finds
3+2p
2
3 ¡ 2p
2giving your answer in the form a+bp
2 where a,b 2 Q.2 If x=p
5 ¡p
3 , findx^2 andx^4. Hence find the value of x^4 ¡ 16 x^2.
Copy and complete: x=p
5 ¡p
3 is one of the solutions of the equation x^4 ¡ 16 x^2 =03aWe know that in general,p
a+b 6 =p
a+p
b
Deduce that ifp
a+b=p
a+p
b then at least one ofaorbis 0.
b What can be deduced aboutaandbifp
a¡b=p
a¡p
b?4aFind the value ofμ
1+p
5
2¶n
¡μ
1 ¡p
5
2¶n
for n=1, 2 , 3 and 4.b What do you suspect aboutμ
1+p
5
2¶n
¡μ
1 ¡p
5
2¶n
for all n 2 Z+?What to do:IGCSE01
cyan magenta yellow black(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\IGCSE01\IG01_06\146IGCSE01_06.cdr Friday, 31 October 2008 9:51:20 AM PETER