Cambridge International Mathematics

(Tina Sui) #1
160 Formulae and simultaneous equations (Chapter 7)

g y=3x+2
y=2x+3

h y=3x+1
y=3x+5

i y=5x¡ 2
y=10x¡ 4

2 Find the simultaneous solution to the following pairs of equations:
a y=x+4
y=5¡x

b y=x+1
y=7¡x

c y=2x¡ 5
y=3¡ 2 x
d y=x¡ 4
y=¡ 2 x¡ 4

e y=3x+2
y=¡ 2 x¡ 3

f y=4x+6
y=6¡ 2 x

SOLUTION BY SUBSTITUTION


The method ofsolution by substitutionis used when at least one equation is given with eitherxoryas
thesubjectof the formula, or if it is easy to makexorythe subject.

Example 14 Self Tutor


Solve simultaneously, by substitution: y=9¡x
2 x+3y=21

y=9¡x..... (1) 2 x+3y=21..... (2)

Since y=9¡x, then 2 x+ 3(9¡x)=21
) 2 x+27¡ 3 x=21
) 27 ¡x=21
) x=6

Substituting x=6 into (1) gives y=9¡6=3.
The solution is: x=6, y=3:
Check: (1) 3=9¡ 6 X (2) 2(6) + 3(3) = 12 + 9 = 21 X

Example 15 Self Tutor


Solve simultaneously, by substitution: 2 y¡x=2
x=1+8y

2 y¡x=2..... (1) x=1+8y..... (2)

Substituting (2) into (1) gives 2 y¡(1 + 8y)=2
) 2 y¡ 1 ¡ 8 y=2
) ¡ 6 y=3
) y=¡^12

Substituting y=¡^12 into (2) gives x=1+8£¡^12 =¡ 3

The solution is: x=¡ 3 , y=¡^12.

Check: (1) 2(¡^12 )¡(¡3) =¡1+3=2 X
(2) 1+8(¡^12 )=1¡4=¡ 3 X

We substitute
for in
the other equation.

9 ¡¡¡xy

x

yx

is the subject of
the second equation,
so we substitute
for in
the first equation.

1+8¡¡

IGCSE01
cyan magenta yellow black

(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\IGCSE01\IG01_07\160IGCSE01_07.CDR Monday, 15 September 2008 4:36:36 PM PETER

Free download pdf