162 Formulae and simultaneous equations (Chapter 7)In problems where the coefficients ofx(ory) arenotthesame sizeoropposite in sign, we may first have
tomultiplyeach equation by a number.Example 17 Self Tutor
Solve simultaneously, by elimination: 3 x+2y=7
2 x¡ 5 y=113 x+2y=7...... (1) 2 x¡ 5 y=11...... (2)
We can eliminateyby multiplying (1) by 5 and (2) by 2.) 15 x+10y=35
+4x¡ 10 y=22
19 x =57 fadding the equationsg
) x=3 fdividing both sides by 19 gSubstituting x=3 into equation (1) gives3(3) + 2y=7
) 9+2y=7
) 2 y=¡ 2
) y=¡ 1So, the solution is: x=3, y=¡ 1.
Check: 3(3) + 2(¡1) = 9¡2=7 X 2(3)¡5(¡1)=6+5=11 XExample 18 Self Tutor
Solve by elimination: 3 x+4y=14
4 x+5y=173 x+4y=14 ::::::(1)
4 x+5y=17 ::::::(2)To eliminatex, multiply both sides of(1) by 4 : 12 x+16y=56 ::::::(3)
(2) by¡ 3 : ¡ 12 x¡ 15 y=¡ 51 ::::::(4)
y=5 fadding (3) and (4)gSubstituting y=5 into (2) gives4 x+ 5(5) = 17
) 4 x+25=17
) 4 x=¡ 8
) x=¡ 2
Thus x=¡ 2 and y=5:Check:
(1) 3(¡2) + 4(5) = (¡6) + 20 = 14 X
(2) 4(¡2) + 5(5) = (¡8) + 25 = 17 XIGCSE01
cyan magenta yellow black(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\IGCSE01\IG01_07\162IGCSE01_07.CDR Monday, 15 September 2008 4:44:38 PM PETER