202 Mensuration (length and area) (Chapter 9)
Example 7 Self Tutor
Find the perimeter of:
ab
a Perimeter
=2¼r
=2£¼£ 3 : 25 m
¼ 20 : 4 m
b Perimeter
= 12 + 12 +length of arc
=24+
¡ 60
360
¢
£ 2 £¼£ 12
¼ 36 : 6 cm
Example 8 Self Tutor
Find the area of each of
the following figures:
ab
Example 9 Self Tutor
A sector has area 25 cm^2 and radius 6 cm. Find the angle subtended at the
centre.
) 25 =
μ
360
£¼£ 62
) 25 =
μ¼
10
)
250
¼
=μ
) μ¼ 79 : 6
) the angle measures 79 : 6 o:
The length of an arc is a
fraction of the
circumference of a circle.
The area of a sector
is a fraction of the
area of a circle.
3.25 m
60° 12 cm
8.96 m
8cm
60°
q°
25 cmX
6cm
a r=
8 : 96
2
=4: 48 m
A=¼r^2
=¼£(4:48)^2
¼ 63 : 1 m^2
b Area=
¡μ
360
¢
£¼r^2
= 36060 £¼£ 82
¼ 33 : 5 cm^2
Area=
μ
μ
360
¶
£¼r^2
IGCSE01
cyan magenta yellow black
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\IGCSE01\IG01_09\202IGCSE01_09.CDR Tuesday, 28 October 2008 9:26:43 AM PETER