262 Coordinate geometry (Chapter 12)Example 8 Self Tutor
Find the coordinates of the midpoint of AB for A(¡ 1 ,3)and B(4,7).x-coordinate of midpoint=¡1+4
2
=^32
=1^12
y-coordinate of midpoint=3+7
2
=5
) the midpoint of AB is (1^12 ,5).Example 9 Self Tutor
M is the midpoint of AB. Find the coordinates of B if A is(1,3)and M is(4,¡2).Let B be(a,b))
a+1
2=4 and
b+3
2=¡ 2
) a+1=8 and b+3=¡ 4
) a=7 and b=¡ 7
) Bis(7,¡7).Example 10 Self Tutor
Suppose A is(¡ 2 ,4)and M is(3,¡1), where M is the midpoint of AB.
Useequal stepsto find the coordinates of B.x-step: ¡ 238y-step: 4 ¡ 1 ¡ 6) Bis(8,¡6).EXERCISE 12C
1 Use this diagram only to find the coordinates of the
midpoint of the line segment:
a GA b ED
c AC d AD
e CD f GF
g EG h GDYou may also be able
to find the midpoint
from a sketch.A (1, 3)M (4, 2)-B( , )abyxGFEACBD3O 3+5+5-5-5A,()-2 ¡4M,()3 ¡-1B,()8 -6+5 +5¡ 5 ¡ 5IGCSE01
cyan magenta yellow black(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
y:\HAESE\IGCSE01\IG01_12\262IGCSE01_12.CDR Friday, 3 October 2008 12:11:19 PM PETER