Coordinate geometry (Chapter 12) 269
)
¡ 4
a¡ 2
=
¡ 2
1
μ
a¡ 2
a¡ 2
¶
fachieving a common denominatorg
) ¡4=¡2(a¡2) fequating numeratorsg
) ¡4=¡ 2 a+4
) 2 a=8
) a=4
Example 16 Self Tutor
Findtgiven that the line joining D(¡ 1 ,¡3) to C(1,t) is
perpendicular to a line with gradient 2.
gradient of DC =¡^12 fperpendicular to line of gradient 2 g
)
t¡¡ 3
1 ¡¡ 1
=¡^12
)
t+3
2
=
¡ 1
2
fsimplifyingg
) t+3=¡ 1 fequating numeratorsg
) t=¡ 4
EXERCISE 12E.1
1 Find the gradient of all lines perpendicular to a line with a gradient of:
a^12 b^25 c 3 d 7 e ¡^25 f ¡ 213 g ¡ 5 h ¡ 1
2 The gradients of two lines are listed below. Which of the line pairs are perpendicular?
a^13 , 3 b 5 ,¡ 5 c^37 ,¡ 213 d 4 ,¡^14
e 6 ,¡^56 f^23 ,¡^32 g
p
q
,
q
p
h
a
b
,¡
b
a
3 Findagiven that the line joining:
a A(1,3) to B(3,a) is parallel to a line with gradient 3
b P(a,¡3) to Q(4,¡2) is parallel to a line with gradient^13
c M(3,a) to N(a,5) is parallel to a line with gradient¡^25.
4 Findtgiven that the line joining:
a A(2,¡3) to B(¡ 2 ,t) is perpendicular to a line with gradient (^114)
b C(t,¡2) to D(1,4) is perpendicular to a line with gradient^23
c P(t,¡2) to Q(5,t) is perpendicular to a line with gradient¡^14.
5 Given the points A(1,4),B(¡ 1 ,0),C(6,3) and D(t,¡1), findtif:
a AB is parallel to CD b AC is parallel to DB
c AB is perpendicular to CD d AD is perpendicular to BC.
IGCSE01
cyan magenta yellow black
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
y:\HAESE\IGCSE01\IG01_12\269IGCSE01_12.CDR Thursday, 25 September 2008 12:13:42 PM PETER