Trigonometry (Chapter 15) 317FINDING TRIGONOMETRIC RATIOS
Example 3 Self Tutor
For the given triangle find
sinμ,cosμandtanμ:sinμ=OPP
HYP
=^45
cosμ=ADJ
HYP
=^35
tanμ=OPP
ADJ
=^43
FINDING SIDES
In a right angled triangle, if we are given another angle and a side we can find:
² the third angle using the ‘angle sum of a triangle is 180 o’
² the other sides using trigonometry.Step 1: Redraw the figure and mark on it HYP, OPP, ADJ relative to the given angle.
Step 2: Choose the correct trigonometric ratio and use it to set up an equation.
Step 3: Solve to find the unknown.Example 4 Self Tutor
Find the unknown length in the following triangles:
aba Now sin 61o=x
9 : 6fsinμ=OPP
HYP
g) sin 61o£ 9 :6=x f£both sides by 9 : 6 g
) x¼ 8 : 40 fSIN 61 ) £ 9 : 6 ENTERg
The length of the side is about 8 : 40 cm.b Now tan 41o=7 : 8
xftanμ=OPP
ADJ
g) x£tan 41o=7: 8 f£both sides byxg) x=7 : 8
tan 41of¥both sides by tan 41og) x¼ 8 : 97 f 7 : 8 ¥ TAN 41 ) ENTERg
The length of the side is about 8 : 97 m.3cm4cm5cmqqOPPHYP ADJxcm61° 9.6 cmHYPOPPADJxcm61° 9.6 cm7.8 m xm
41°HYPOPP ADJ
7.8 m xm
41°IGCSE01
cyan magenta yellow black(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\IGCSE01\IG01_15\317IGCSE01_15.CDR Friday, 26 September 2008 2:41:28 PM PETER