Cambridge International Mathematics

(Tina Sui) #1
Trigonometry (Chapter 15) 329

8aIfμis any acute angle as shown, find the length of:
i OQ ii PQ iii AT
b Explain howtanμor tangentμmay have been given its
name.

IMPORTANT ANGLES


From the previous exercise you should have discovered trigonometric ratios of some important angles:

μ cosμ sinμ tanμ
0 o 1 0 0
30 o

p
3
2

1
2
p^1
3
45 o p^12 p^121

60 o^12

p
3
2

p
3
90 o 0 1 undefined

In the following exercise you will see some new notation. It is customary to write:
sin^2 μ to represent (sinμ)^2 , cos^2 μ to represent (cosμ)^2 , and tan^2 μ to represent (tanμ)^2.

EXERCISE 15D.2
1 Show that:
a sin^230 o+ cos^230 o=1 b cos^245 o+ sin^245 o=1
c sin 30ocos 60o+ sin 60ocos 30o=1 d sin^230 o+ sin^245 o+ sin^260 o=^32

2 Without using a calculator find the value of:

a sin^260 o b

sin 30o
cos 30o

c tan^260 o

d cos 0o+ sin 90o e cos^230 o f 1 ¡tan^230 o

g

sin 60o
cos 60o

h 1 ¡cos 60o i 2 + sin 30o

3 Find the exact value of the unknown in:
abc

de f

You should memorise
these results or be
able to quickly
deduce them from
diagrams.

12 cm 60°

acm

10 cm
30°

hcm

cm

8m
60°

120° 15 cm

dcm

xcm

6cm

60°

~` 2 cm
45°

ycm

x

1

Q A(1, 0)

1

y

P T

q

IGCSE01
cyan magenta yellow black

(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\IGCSE01\IG01_15\329IGCSE01_15.CDR Friday, 17 October 2008 4:09:54 PM PETER

Free download pdf