Trigonometry (Chapter 15) 3298aIfμis any acute angle as shown, find the length of:
i OQ ii PQ iii AT
b Explain howtanμor tangentμmay have been given its
name.IMPORTANT ANGLES
From the previous exercise you should have discovered trigonometric ratios of some important angles:μ cosμ sinμ tanμ
0 o 1 0 0
30 op
3
21
2
p^1
3
45 o p^12 p^12160 o^12p
3
2p
3
90 o 0 1 undefinedIn the following exercise you will see some new notation. It is customary to write:
sin^2 μ to represent (sinμ)^2 , cos^2 μ to represent (cosμ)^2 , and tan^2 μ to represent (tanμ)^2.EXERCISE 15D.2
1 Show that:
a sin^230 o+ cos^230 o=1 b cos^245 o+ sin^245 o=1
c sin 30ocos 60o+ sin 60ocos 30o=1 d sin^230 o+ sin^245 o+ sin^260 o=^322 Without using a calculator find the value of:a sin^260 o bsin 30o
cos 30oc tan^260 od cos 0o+ sin 90o e cos^230 o f 1 ¡tan^230 ogsin 60o
cos 60oh 1 ¡cos 60o i 2 + sin 30o3 Find the exact value of the unknown in:
abcde fYou should memorise
these results or be
able to quickly
deduce them from
diagrams.12 cm 60°acm10 cm
30°hcmcm8m
60°120° 15 cmdcmxcm6cm60°~` 2 cm
45°ycmx1Q A(1, 0)1yP TqIGCSE01
cyan magenta yellow black(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\IGCSE01\IG01_15\329IGCSE01_15.CDR Friday, 17 October 2008 4:09:54 PM PETER