Trigonometry (Chapter 15) 329
8aIfμis any acute angle as shown, find the length of:
i OQ ii PQ iii AT
b Explain howtanμor tangentμmay have been given its
name.
IMPORTANT ANGLES
From the previous exercise you should have discovered trigonometric ratios of some important angles:
μ cosμ sinμ tanμ
0 o 1 0 0
30 o
p
3
2
1
2
p^1
3
45 o p^12 p^121
60 o^12
p
3
2
p
3
90 o 0 1 undefined
In the following exercise you will see some new notation. It is customary to write:
sin^2 μ to represent (sinμ)^2 , cos^2 μ to represent (cosμ)^2 , and tan^2 μ to represent (tanμ)^2.
EXERCISE 15D.2
1 Show that:
a sin^230 o+ cos^230 o=1 b cos^245 o+ sin^245 o=1
c sin 30ocos 60o+ sin 60ocos 30o=1 d sin^230 o+ sin^245 o+ sin^260 o=^32
2 Without using a calculator find the value of:
a sin^260 o b
sin 30o
cos 30o
c tan^260 o
d cos 0o+ sin 90o e cos^230 o f 1 ¡tan^230 o
g
sin 60o
cos 60o
h 1 ¡cos 60o i 2 + sin 30o
3 Find the exact value of the unknown in:
abc
de f
You should memorise
these results or be
able to quickly
deduce them from
diagrams.
12 cm 60°
acm
10 cm
30°
hcm
cm
8m
60°
120° 15 cm
dcm
xcm
6cm
60°
~` 2 cm
45°
ycm
x
1
Q A(1, 0)
1
y
P T
q
IGCSE01
cyan magenta yellow black
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\IGCSE01\IG01_15\329IGCSE01_15.CDR Friday, 17 October 2008 4:09:54 PM PETER