Cambridge International Mathematics

(Tina Sui) #1
348 Algebraic fractions (Chapter 16)

3 Simplify:

a
x
3

+2 b
m
2

¡ 1 c
a
3

+a d
b
5

¡ 2

e
x
6

¡ 3 f 3+
x
4

g 5 ¡
x
6

h 2+

3

x

i 6 ¡

3

x

j b+

3

b

k

5

x

+x l
y
6

¡ 2 y

4 Simplify:

a

x
3

+

3 x
5

b

3 x
5

¡

2 x
7

c

5

a

+

1

2 a

d

6

y

¡

3

4 y

e

3

b

+

4

c

f

5

4 a

¡

6

b

g

x
10

+3 h 4 ¡

x
3

Addition and subtraction of more complicated algebraic fractions can be made relatively straightforward if
we adopt a consistent approach.

For example:

x+2
3

+

5 ¡ 2 x
2

=

2

2

μ
x+2
3


+

3

3

μ
5 ¡ 2 x
2


fachieves LCD of 6 g

=

2(x+2)
6

+

3(5¡ 2 x)
6

fsimplify each fractiong

We can then write the expression as a single fraction and simplify the numerator.

Example 12 Self Tutor


Write as a single fraction: a

x
12

+

x¡ 1
4
b

x¡ 1
3

¡

x+2
7

a
x
12

+

x¡ 1
4

=

x
12

+

3

3

μ
x¡ 1
4


=

x+3(x¡1)
12

=

x+3x¡ 3
12

=
4 x¡ 3
12

b
x¡ 1
3

¡

x+2
7

=

7

7

μ
x¡ 1
3


¡

3

3

μ
x+2
7


=

7(x¡1)
21

¡

3(x+2)
21

=

7(x¡1)¡3(x+2)
21

=
7 x¡ 7 ¡ 3 x¡ 6
21

=

4 x¡ 13
21

D MORE COMPLICATED FRACTIONS [2.9]


IGCSE01
cyan magenta yellow black

(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
y:\HAESE\IGCSE01\IG01_16\348IGCSE01_16.CDR Thursday, 2 October 2008 1:57:07 PM PETER

Free download pdf