348 Algebraic fractions (Chapter 16)3 Simplify:a
x
3+2 b
m
2¡ 1 c
a
3+a d
b
5¡ 2
e
x
6¡ 3 f 3+
x
4g 5 ¡
x
6h 2+3
xi 6 ¡3
xj b+3
bk5
x+x l
y
6¡ 2 y4 Simplify:ax
3+
3 x
5b3 x
5¡
2 x
7c5
a+
1
2 ad6
y¡
3
4 ye3
b+
4
cf5
4 a¡
6
bgx
10+3 h 4 ¡x
3Addition and subtraction of more complicated algebraic fractions can be made relatively straightforward if
we adopt a consistent approach.For example:x+2
3+
5 ¡ 2 x
2=
2
2
μ
x+2
3¶
+3
3
μ
5 ¡ 2 x
2¶
fachieves LCD of 6 g=
2(x+2)
6+
3(5¡ 2 x)
6fsimplify each fractiongWe can then write the expression as a single fraction and simplify the numerator.Example 12 Self Tutor
Write as a single fraction: ax
12+
x¡ 1
4
bx¡ 1
3¡
x+2
7a
x
12+
x¡ 1
4=x
12+
3
3
μ
x¡ 1
4¶=
x+3(x¡1)
12=x+3x¡ 3
12=
4 x¡ 3
12b
x¡ 1
3¡
x+2
7=7
7
μ
x¡ 1
3¶
¡3
3
μ
x+2
7¶=
7(x¡1)
21¡
3(x+2)
21=7(x¡1)¡3(x+2)
21=
7 x¡ 7 ¡ 3 x¡ 6
21=4 x¡ 13
21D MORE COMPLICATED FRACTIONS [2.9]
IGCSE01
cyan magenta yellow black(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
y:\HAESE\IGCSE01\IG01_16\348IGCSE01_16.CDR Thursday, 2 October 2008 1:57:07 PM PETER