392 Introduction to functions (Chapter 19)
We write g(f(2)) = 7:
Similarly, f(g(2)) is obtained by applyinggfirst, then applyingfto the result:
2
g(x)=x+3
5
f(x)=x^2
25
3
g(x)=x+3
6
f(x)=x^2
36
We write f(g(2)) = 25 and f(g(3)) = 36:
More generally, we can define acomposite function f(g(x)) which allows us to perform calculations like
these in one step.
Given two functions f(x) and g(x), thecomposite functionoffandg
is the function which mapsxonto f(g(x)):
In the above example where f(x)=x^2 and g(x)=x+3, f(g(x)) =f(x+3)
=(x+3)^2
Notice that f(g(2)) = 25 and f(g(3)) = 36 are both true for this function.
Also notice that g(f(x)) =g(x^2 )
=x^2 +3, so in general f(g(x)) 6 =g(f(x)):
Example 6 Self Tutor
Consider the functions f(x)=x^2 +1and g(x)=2x¡ 3.
a Find the value of f(g(2)) and g(f(3)):
b Find, in simplest form, f(g(x)) and g(f(x)):
c Usebto check your answers toa.
a g(x)=2x¡ 3
) g(2) = 2(2)¡3=1
) f(g(2)) =f(1)
=1^2 +1
=2
f(x)=x^2 +1
) f(3) = 3^2 +1=10
) g(f(3)) =g(10)
= 2(10)¡ 3
=17
b f(g(x)) =f(2x¡3)
=(2x¡3)^2 +1
=4x^2 ¡ 12 x+9+1
=4x^2 ¡ 12 x+10
g(f(x)) =g(x^2 +1)
=2(x^2 +1)¡ 3
=2x^2 +2¡ 3
=2x^2 ¡ 1
c When x=2, f(g(2)) = 4(2)^2 ¡12(2) + 10
=16¡24 + 10
=2 which checks witha X
When x=3, g(f(3)) = 2(3)^2 ¡ 1
=18¡ 1
=17 which checks witha X
To find we
look at the function,
and whenever we see
we replace it by
within brackets.
fgx
f
x
gx
(())
()
IGCSE01
cyan magenta yellow black
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\IGCSE01\IG01_19\392IGCSE01_19.CDR Monday, 13 October 2008 10:46:05 AM PETER