396 Introduction to functions (Chapter 19)2 Draw the graph of y=(
x if x> 0
¡x if x< 0using the results of 1.3 Consider M(x)=p
x^2 wherex^2 must be found before finding the square root.
Find the values of M(5),M(7),M(^12 ),M(0),M(¡ 2 ),M(¡8)andM(¡10).
4 What conclusions can be made from 1 and 3?THE ABSOLUTE VALUE OF A NUMBER
Theabsolute valueormodulusof a real number is its size, ignoring its sign.
We denote the absolute value ofxbyjxj.For example, the absolute value of 7 is 7 , and
the absolute value of¡ 7 is also 7.Geometric definition of absolute valueIf x> 0 :Ifx< 0 :For example:Algebraic definition of absolute valueFromDiscovery 3,The vertical line
x=0is the
line of symmetry
of the graph.Example 7 Self Tutor
a ja+bj
=j¡7+3j
=j¡ 4 j
=4b jabj
=j¡ 7 £ 3 j
=j¡ 21 j
=21The absolute value
behaves as a grouping
symbol. Perform all
operations within it first.77
-7 07||x
0 x||x
x 0yxThis branch
isyxx= -, <0.This branch
isyxx= , >0.
Ojxjis the distance ofxfrom 0 on the number line.
Because the modulus is a distance, it cannot be negative.jxj=(
x ifx> 0
¡x ifx< 0or jxj=p
x^2y=jxj has graph:If a=¡ 7 and b=3find: a ja+bj b jabjIGCSE01
cyan magenta yellow black(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
y:\HAESE\IGCSE01\IG01_19\396IGCSE01_19.cdr Friday, 10 October 2008 10:17:52 AM PETER