398 Introduction to functions (Chapter 19)THE GRAPH OF y=jax+bj
One way of graphing y=jax+bj is to first graph y=ax+b.
Whatever part of the graph is below thex-axis we then reflect in thex-axis.Example 9 Self Tutor
Graph y=j 2 x¡ 3 j. Comment on any symmetry in the graph.We begin by graphing y=2x¡ 3.x 0 1 2
y ¡ 3 ¡ 1 1The graph cuts thex-axis when y=0.) 2 x¡3=0
) x=^32To obtain the graph of y=j 2 x¡ 3 j we
reflect all points withx<^32 in thex-axis.x=^32 is a vertical line of symmetry.EXERCISE 19F.2
1 Sketch the graphs of:
a f(x)=jx+1j b f(x)=jx¡ 1 j c f(x)=j 2 x¡ 1 j
d f(x)=j 4 ¡xj e f(x)=j 2 ¡ 3 xj f f(x)= j 3 x+2j
2 What is the equation of the line of symmetry of f(x)=jax+bj?
3 Find the function f(x)=jax+bj which has the graph:
abcReview set 19A
#endboxedheading1 For these functions, find the domain and range:
ab cx-3yO Ew_Ew_32
x=^3y= 2 x- 3yx()-4 ¡4,()3 -2,Oyx()-5 -145,()-2 ¡44,()3 -81,Oyx
OOy2 x2 yx¡=¦()Oy-1 x2y¡=¦()xOy-2 x1y¡=¦()x¡
IGCSE01
cyan magenta yellow black(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
y:\HAESE\IGCSE01\IG01_19\398IGCSE01_19.CDR Friday, 10 October 2008 10:21:49 AM PETER