Cambridge International Mathematics

(Tina Sui) #1
Transformation geometry (Chapter 20) 403

If P(x,y) istranslatedhunits in thex-direction andkunits
in they-direction to become P^0 (x^0 ,y^0 ), then x^0 =x+hand
y^0 =y+k:

We write P(x,y)

¡h
k

¢
¡¡!

P^0 (x+h,y+k)

where P^0 is called theimageof the object P and
¡h
k

¢
is called thetranslation vector.

x^0 =x+h
y^0 =y+k

)
are called thetransformation equations.

Example 1 Self Tutor


Triangle OAB with vertices O(0,0),A(2,3)and B(¡ 1 ,2)is translated

¡ 3
2

¢
.

Find the image vertices and illustrate the object and image.

O( 0 , 0 )

¡ 3
2

¢
¡¡!

O^0 ( 3 , 2 )

A( 2 , 3 )

¡ 3
2

¢
¡¡!

A^0 ( 5 , 5 )

B(¡ 1 , 2 )

¡ 3
2

¢
¡¡!

B^0 ( 2 , 4 )

Example 2 Self Tutor


On a set of axes draw the line with equation y=^12 x+1.

Find the equation of the image when the line is translated through

¡ 3
¡ 1

¢
:

Under a translation, the image of a line is a parallel
line, and so will have the same gradient.

) the image of y=^12 x+1has the form
y=^12 x+c.

The object contains the point(0,1) since the
y-intercept is 1.

Since (0,1)

¡ 3
¡ 1

¢
¡¡¡!

(3,0),(3,0)lies on the image.

) 0=^12 (3) +c
) c=¡^32

) the equation of the image is y=^12 x¡^32.

y

x
5

5
A
B

O

O'

A'
B'

y

x

yk¡+¡

y

xxh¡+¡

P,()xy¡

P'()xy'',¡

h

k

³
h
k

́

O

O

y

x

& 1 *
3





object

image

()0 ¡1,

()3 ¡0,
2
1
2
y=^1 x- 1

2
y=^1 x+ 1

IGCSE01
cyan magenta yellow black

(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
y:\HAESE\IGCSE01\IG01_20\403IGCSE01_20.CDR Friday, 3 October 2008 3:33:14 PM PETER

Free download pdf