416 Transformation geometry (Chapter 20)
8 For the following, copy and draw the required function:
a
sketch y=f(x¡2)
b
sketch y=f(x)+2
c
sketch y=^12 f(x)
d
sketch y=2f(x)
e
sketch y=¡ 2 f(x)
f
sketch y=^12 f(x)
9 The graph of y=f(x) is shown alongside.
On the same set of axes, graph:
a y=f(x) b y=¡f(x) c y=^32 f(x)
d y=f(x)+2 e y=f(x¡2)
Label each graph clearly.
10 Consider f(x)=x^2 ¡ 4 , g(x)=2f(x) and h(x)=f(2x).
a Findg(x)andh(x)in terms ofx.
b Graph y=f(x), y=g(x) and y=h(x) on the same set of axes, using a graphics calculator
if necessary.
c Describe fully the single transformation which maps the graph of y=f(x) onto the graph of
y=g(x).
d Under the mapping inc, which points are invariant?
e Find thezerosof h(x), which are the values ofxfor whichh(x)is zero.
f Describe fully the single transformation which maps the graph of y=f(x) onto the graph of
y=h(x).
If a transformation maps an object onto its image, then theinverse transformationmaps the image back
onto the object.
G THE INVERSE OF A TRANSFORMATION [5.5]
O
y
x
yx¡=¡¦()
O
y
x
yx¡=¡¦()
2
-1
y
x
O
14
-2
yx¡=¡¦()
y
x
O
14
-2
yx¡=¡¦()
y
O x
-2
2
yx¡=¡¦()
O
y
x
()2 ¡2, ()4 ¡2,
yx¡=¡¦()
x
y¡=¡-2
y
O
yx¡=¡¦()
IGCSE01
cyan magenta yellow black
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\IGCSE01\IG01_20\416IGCSE01_20.CDR Tuesday, 14 October 2008 4:16:37 PM PETER