Cambridge International Mathematics

(Tina Sui) #1
Thehorizontal line testsays that ‘for a function to have an inverse function, no horizontal line can cut
it more than once.’

Example 4 Self Tutor


Find f¡^1 (x) for: a f(x)=8¡ 3 x b f(x)=

10

x+1

a By interchangingxandy, the inverse of
y=8¡ 3 x
is x=8¡ 3 y
) 3 y=8¡x

) y=

8 ¡x
3
) f¡^1 (x)=

8 ¡x
3

b By interchangingxandy, the inverse of
y=

10

x+1

is x=

10

y+1
) x(y+1)=10
) xy+x=10
) xy=10¡x

) y=
10 ¡x
x

) f¡^1 (x)=

10 ¡x
x

EXERCISE 23B
1 Find f¡^1 (x) for each of the following functions:

a f(x)=x¡ 7 b f(x)=3x+2 c f(x)=

3 ¡ 2 x
4

d f(x)=x^3 e f(x)=2x^3 +1 f f(x)=

4 x¡ 1
3

g f(x)=

p
x+1 h f(x)=

p
3 x¡ 5 i f(x)=

1

x¡ 2

2aFind the inverse function of: i f(x)=8¡x ii f(x)=

9

x
b What do you observe from your answers ina?

3aShow that the inverse of a linear function is also linear.
b What is the relationship between the gradient of a linear function and the gradient of its inverse?
c Explain why the following statement is true:

d
iiiy

O x
-1 ()2 -2,

“If(a,b) lies on y=f(x)=mx+c, then (b,a) lies on y=f¡^1 (x).”
Find the inverse function of:
y

x

O
2

()6 ¡1, ¦()x

¦()x

474 Further functions (Chapter 23)

IGCSE01
cyan magenta yellow black

(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\IGCSE01\IG01_23\474IGCSE01_23.CDR Monday, 27 October 2008 2:18:39 PM PETER

Free download pdf