Thehorizontal line testsays that ‘for a function to have an inverse function, no horizontal line can cut
it more than once.’Example 4 Self Tutor
Find f¡^1 (x) for: a f(x)=8¡ 3 x b f(x)=10
x+1a By interchangingxandy, the inverse of
y=8¡ 3 x
is x=8¡ 3 y
) 3 y=8¡x) y=8 ¡x
3
) f¡^1 (x)=8 ¡x
3b By interchangingxandy, the inverse of
y=10
x+1is x=10
y+1
) x(y+1)=10
) xy+x=10
) xy=10¡x) y=
10 ¡x
x) f¡^1 (x)=10 ¡x
xEXERCISE 23B
1 Find f¡^1 (x) for each of the following functions:a f(x)=x¡ 7 b f(x)=3x+2 c f(x)=3 ¡ 2 x
4d f(x)=x^3 e f(x)=2x^3 +1 f f(x)=4 x¡ 1
3g f(x)=p
x+1 h f(x)=p
3 x¡ 5 i f(x)=1
x¡ 22aFind the inverse function of: i f(x)=8¡x ii f(x)=9
x
b What do you observe from your answers ina?3aShow that the inverse of a linear function is also linear.
b What is the relationship between the gradient of a linear function and the gradient of its inverse?
c Explain why the following statement is true:d
iiiyO x
-1 ()2 -2,“If(a,b) lies on y=f(x)=mx+c, then (b,a) lies on y=f¡^1 (x).”
Find the inverse function of:
yxO
2()6 ¡1, ¦()x¦()x474 Further functions (Chapter 23)IGCSE01
cyan magenta yellow black(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\IGCSE01\IG01_23\474IGCSE01_23.CDR Monday, 27 October 2008 2:18:39 PM PETER