Thehorizontal line testsays that ‘for a function to have an inverse function, no horizontal line can cut
it more than once.’
Example 4 Self Tutor
Find f¡^1 (x) for: a f(x)=8¡ 3 x b f(x)=
10
x+1
a By interchangingxandy, the inverse of
y=8¡ 3 x
is x=8¡ 3 y
) 3 y=8¡x
) y=
8 ¡x
3
) f¡^1 (x)=
8 ¡x
3
b By interchangingxandy, the inverse of
y=
10
x+1
is x=
10
y+1
) x(y+1)=10
) xy+x=10
) xy=10¡x
) y=
10 ¡x
x
) f¡^1 (x)=
10 ¡x
x
EXERCISE 23B
1 Find f¡^1 (x) for each of the following functions:
a f(x)=x¡ 7 b f(x)=3x+2 c f(x)=
3 ¡ 2 x
4
d f(x)=x^3 e f(x)=2x^3 +1 f f(x)=
4 x¡ 1
3
g f(x)=
p
x+1 h f(x)=
p
3 x¡ 5 i f(x)=
1
x¡ 2
2aFind the inverse function of: i f(x)=8¡x ii f(x)=
9
x
b What do you observe from your answers ina?
3aShow that the inverse of a linear function is also linear.
b What is the relationship between the gradient of a linear function and the gradient of its inverse?
c Explain why the following statement is true:
d
iiiy
O x
-1 ()2 -2,
“If(a,b) lies on y=f(x)=mx+c, then (b,a) lies on y=f¡^1 (x).”
Find the inverse function of:
y
x
O
2
()6 ¡1, ¦()x
¦()x
474 Further functions (Chapter 23)
IGCSE01
cyan magenta yellow black
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\IGCSE01\IG01_23\474IGCSE01_23.CDR Monday, 27 October 2008 2:18:39 PM PETER