Cambridge International Mathematics

(Tina Sui) #1

Example 2 Self Tutor


ABCD is a parallelogram in which

¡!

AB=a and
¡!
BC=b.
Find vector expressions for:

a

¡!

BA b

¡!

CB c

¡!

AD d

¡!

CD

a

¡!

BA=¡a fthe negative vector of

¡!

ABg b

¡!

CB=¡b fthe negative vector of

¡!

BCg

c

¡!

AD=b fparallel to and the same length as

¡!

BCg

d

¡!

CD=¡a fparallel to and the same length as

¡!

BAg

EXERCISE 24B
1 State the vectors which are:
a equal in magnitude b parallel
c in the same direction d equal
e negatives of one another.

2 Write in terms of vectorsp,qandr:

a

¡!

AB b

¡!

BA c

¡!

BC

d

¡!

CB e

¡!

CA f

¡!

AC

3 The figure alongside consists of two isosceles triangles with
PQkSR and

¡!

PQ=p,

¡!

PS=q.
Which of the following statements are true?

a

¡!

RS=p b

¡!

QR=q c

¡!

QS=q
d QS=PS e

¡!

PS=¡

¡!

RQ

We have already been operating with vectors without realising it.
Bearing problems are an example of this. The vectors in this case
aredisplacements.
A typical problem could be:
“A girl runs from A in a northerly direction for 3 km and then in a
westerly direction for 2 km to B. How far is she from her starting
point and in what direction?”
We can use trigonometry and Pythagoras’ theorem to answer such
problems as we need to findμandx.

C VECTOR ADDITION [5.2]


a

b

A B

D C

a
b
c

d
e

PQ

SR

q

p

N

S

W E

xkm

2km

3km

A

B


A

B

C

r
p

q

486 Vectors (Chapter 24)

IGCSE01
cyan magenta yellow black

(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\IGCSE01\IG01_24\486IGCSE01_24.CDR Monday, 27 October 2008 2:26:38 PM PETER

Free download pdf