Example 2 Self Tutor
ABCD is a parallelogram in which
¡!
AB=a and
¡!
BC=b.
Find vector expressions for:
a
¡!
BA b
¡!
CB c
¡!
AD d
¡!
CD
a
¡!
BA=¡a fthe negative vector of
¡!
ABg b
¡!
CB=¡b fthe negative vector of
¡!
BCg
c
¡!
AD=b fparallel to and the same length as
¡!
BCg
d
¡!
CD=¡a fparallel to and the same length as
¡!
BAg
EXERCISE 24B
1 State the vectors which are:
a equal in magnitude b parallel
c in the same direction d equal
e negatives of one another.
2 Write in terms of vectorsp,qandr:
a
¡!
AB b
¡!
BA c
¡!
BC
d
¡!
CB e
¡!
CA f
¡!
AC
3 The figure alongside consists of two isosceles triangles with
PQkSR and
¡!
PQ=p,
¡!
PS=q.
Which of the following statements are true?
a
¡!
RS=p b
¡!
QR=q c
¡!
QS=q
d QS=PS e
¡!
PS=¡
¡!
RQ
We have already been operating with vectors without realising it.
Bearing problems are an example of this. The vectors in this case
aredisplacements.
A typical problem could be:
“A girl runs from A in a northerly direction for 3 km and then in a
westerly direction for 2 km to B. How far is she from her starting
point and in what direction?”
We can use trigonometry and Pythagoras’ theorem to answer such
problems as we need to findμandx.
C VECTOR ADDITION [5.2]
a
b
A B
D C
a
b
c
d
e
PQ
SR
q
p
N
S
W E
xkm
2km
3km
A
B
q°
A
B
C
r
p
q
486 Vectors (Chapter 24)
IGCSE01
cyan magenta yellow black
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\IGCSE01\IG01_24\486IGCSE01_24.CDR Monday, 27 October 2008 2:26:38 PM PETER