Cambridge International Mathematics

(Tina Sui) #1

DISPLACEMENT VECTORS


Suppose we have three towns A, B and C.

A trip from A to B followed by a trip from B to C is equivalent
to a trip from A to C.

This can be expressed in a vector form as the sum
¡!
AB+

¡!

BC=

¡!

AC where the+sign could mean ‘followed by’.

VECTOR ADDITION


After considering displacements in diagrams like those above, we can now define vector addition
geometrically:

To addaandb:
Step 1: Drawa.
Step 2: At the arrowhead end ofa, drawb.
Step 3: Join the beginning ofato the arrowhead end ofb. This is vector a+b.

So, given we have

Example 3 Self Tutor


Find a single vector which is equal to:

a

¡!

AB+

¡!

BE

b

¡!

DC+

¡!

CA+

¡!

AE

c

¡!

CB+

¡!

BD+

¡!

DC

a

¡!

AB+

¡!

BE=

¡!

AE fas showng
b

¡!

DC+

¡!

CA+

¡!

AE=

¡!

DE

c

¡!

CB+

¡!

BD+

¡!

DC=

¡!

CC= 0 fzero vectorg

A

B

C

COMPUTER
DEMO
a

b a

b

ab+

AB

C

D

E

AB

E

D

C

Vectors (Chapter 24) 487

IGCSE01
cyan magenta yellow black

(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\IGCSE01\IG01_24\487IGCSE01_24.CDR Monday, 27 October 2008 2:26:40 PM PETER

Free download pdf