DISPLACEMENT VECTORS
Suppose we have three towns A, B and C.
A trip from A to B followed by a trip from B to C is equivalent
to a trip from A to C.
This can be expressed in a vector form as the sum
¡!
AB+
¡!
BC=
¡!
AC where the+sign could mean ‘followed by’.
VECTOR ADDITION
After considering displacements in diagrams like those above, we can now define vector addition
geometrically:
To addaandb:
Step 1: Drawa.
Step 2: At the arrowhead end ofa, drawb.
Step 3: Join the beginning ofato the arrowhead end ofb. This is vector a+b.
So, given we have
Example 3 Self Tutor
Find a single vector which is equal to:
a
¡!
AB+
¡!
BE
b
¡!
DC+
¡!
CA+
¡!
AE
c
¡!
CB+
¡!
BD+
¡!
DC
a
¡!
AB+
¡!
BE=
¡!
AE fas showng
b
¡!
DC+
¡!
CA+
¡!
AE=
¡!
DE
c
¡!
CB+
¡!
BD+
¡!
DC=
¡!
CC= 0 fzero vectorg
A
B
C
COMPUTER
DEMO
a
b a
b
ab+
AB
C
D
E
AB
E
D
C
Vectors (Chapter 24) 487
IGCSE01
cyan magenta yellow black
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\IGCSE01\IG01_24\487IGCSE01_24.CDR Monday, 27 October 2008 2:26:40 PM PETER