We can now check the results ofExample 13algebraically:
Ina, 2 r+s=2
μ
3
2
¶
+
μ
2
¡ 2
¶
=
μ
6
4
¶
+
μ
2
¡ 2
¶
=
μ
8
2
¶
and inb, r¡ 2 s=
μ
3
2
¶
¡ 2
μ
2
¡ 2
¶
=
μ
3
2
¶
¡
μ
4
¡ 4
¶
=
μ
¡ 1
6
¶
Example 14 Self Tutor
Draw sketches of any two vectorspandqsuch that: a p=2q b p=¡^12 q.
Letqbe ab
EXERCISE 24F
1 For r=
μ
2
3
¶
and s=
μ
4
¡ 2
¶
, find geometrically:
a 2 r b ¡ 3 s c^12 r d r¡ 2 s
e 3 r+s f 2 r¡ 3 s g^12 s+r h^12 (2r+s)
2 Check your answers to 1 using component form arithmetic.
3 Draw sketches of any two vectorspandqsuch that:
a p=q b p=¡q c p=3q d p=^34 q e p=¡^32 q
4 For p=
μ
3
1
¶
and q=
μ
¡ 2
3
¶
, find r=
μ
x
y
¶
such that:
a r=p¡ 3 q b p+r=q c q¡ 3 r=2p d p+2r¡q= 0
5 Ifais any vector, prove that jkaj=jkjjaj: Hint: Writeain component form.
Two vectors areparallelif one is a scalar multiple of the other.
If two vectors are parallel then one vector is a scalar multiple of the other.
Ifais parallel tobthen we write akb.
Thus, ² if a=kb for some non-zero scalark, then akb
² if akb there exists a non-zero scalarksuch that a=kb.
G PARALLEL VECTORS [5.1, 5.2]
q q q
p q p
a
b
Vectors (Chapter 24) 497
IGCSE01
cyan magenta yellow black
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\IGCSE01\IG01_24\497IGCSE01_24.CDR Monday, 27 October 2008 2:27:10 PM PETER