5 A, M and B are collinear and M is the midpoint of AB.
If a=
¡!
OA and b=
¡!
OB, show that
¡¡!
OM=^12 a+^12 b.
6 In the given figure, AP : PB=4:3. Deduce a vector equation
for
¡!
OP in terms of a=
¡!
OA and b=
¡!
OB.
7 ABCD is a parallelogram and side DC is extended to E
such that DC=CE.
If
¡!
AD=pand
¡!
AB=q, find in terms ofpandq:
a
¡!
DC b
¡!
DE c
¡!
AC
d
¡!
AE e
¡!
EA f
¡!
BE:
8 In triangle OAB, let
¡!
OA=aand
¡!
OB=b. M and N are the
midpoints of sides OB and AB respectively.
a Find vector expressions for:
i
¡!
BA ii
¡¡!
MN.
b What can be deduced fromaii?
c If O is the origin, find the position vectors of:
i M ii N iii the midpoint of MN.
9 ABCD is a parallelogram and M is the midpoint of side DC.
P is located on line segment AM such that AP : PM=2:1.
a If
¡!
AB=p and
¡!
AD=q, find vector expressions for:
i
¡¡!
DM ii
¡!
AP iii
¡!
DB iv
¡!
DP
b What can be deduced about the points D, P and B?
Review set 24A
#endboxedheading
1 On grid paper draw the vectors:
a a=
μ
¡ 2
3
¶
b b=
μ
1
4
¶
c c=
μ
¡ 3
¡ 5
¶
2 Write in the form
μ
x
y
¶
:
a
b
M
A
O B
a
b
P
A
B
O
4 parts
3 parts
DCE
AB
O
A
B
M N
AB
DC
P
M
d
e
ab
Vectors (Chapter 24) 501
IGCSE01
cyan magenta yellow black
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\IGCSE01\IG01_24\501IGCSE01_24.CDR Monday, 27 October 2008 2:27:21 PM PETER