Cambridge International Mathematics

(Tina Sui) #1
5 A, M and B are collinear and M is the midpoint of AB.
If a=

¡!

OA and b=

¡!

OB, show that

¡¡!

OM=^12 a+^12 b.

6 In the given figure, AP : PB=4:3. Deduce a vector equation
for

¡!

OP in terms of a=

¡!

OA and b=

¡!

OB.

7 ABCD is a parallelogram and side DC is extended to E
such that DC=CE.
If

¡!

AD=pand

¡!

AB=q, find in terms ofpandq:

a

¡!

DC b

¡!

DE c

¡!

AC

d

¡!

AE e

¡!

EA f

¡!

BE:

8 In triangle OAB, let

¡!

OA=aand

¡!

OB=b. M and N are the
midpoints of sides OB and AB respectively.
a Find vector expressions for:
i

¡!

BA ii

¡¡!

MN.

b What can be deduced fromaii?
c If O is the origin, find the position vectors of:
i M ii N iii the midpoint of MN.

9 ABCD is a parallelogram and M is the midpoint of side DC.
P is located on line segment AM such that AP : PM=2:1.
a If

¡!

AB=p and

¡!

AD=q, find vector expressions for:
i

¡¡!

DM ii

¡!

AP iii

¡!

DB iv

¡!

DP

b What can be deduced about the points D, P and B?

Review set 24A
#endboxedheading

1 On grid paper draw the vectors:

a a=

μ
¡ 2
3


b b=

μ
1
4


c c=

μ
¡ 3
¡ 5


2 Write in the form

μ
x
y


:

a

b

M

A

O B

a

b

P

A

B

O

4 parts

3 parts

DCE

AB

O
A

B

M N

AB

DC

P

M

d
e

ab

Vectors (Chapter 24) 501

IGCSE01
cyan magenta yellow black

(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\IGCSE01\IG01_24\501IGCSE01_24.CDR Monday, 27 October 2008 2:27:21 PM PETER

Free download pdf