Cambridge International Mathematics

(Tina Sui) #1
Review set 24B
#endboxedheading

1 On grid paper draw the vectors:

a p=

μ
1
4


b q=

μ
¡ 3
¡ 1


c r=

μ
5
¡ 2


2 Write in the form

μ
x
y


:

3 Draw a vector diagram to represent a displacement of 200 km in a westerly direction.
4 An aeroplane needs to fly due east to get to its destination. In still air it can travel at 400 km/h.
However, a 40 km/h wind is blowing from the south.
a Draw a vector diagram which shows clearly the direction that the aeroplane must head in.
b What will be the actual speed of the aeroplane and its bearing to the nearest degree?

5

a

¡!

LK b

̄
̄ ̄¡LK!
̄
̄ ̄

6 Findngiven that

μ
¡ 2
¡ 3


and

μ
n
9


are parallel vectors.

7 Suppose d=

μ
3
1


and e=

μ
¡ 2
2


.

a Draw a vector diagram to illustrate d¡e. b Find d¡e in component form.
c Find: i 2 e+3d ii 4 d¡ 3 e
8 What results when opposite vectors are added?

9 If

¡!

AB=p and

¡!

BC=q and ABCD is a parallelogram,
find vector expressions for:

a

¡!

CD b

¡¡!

BM c

¡¡!

MD d

¡!

AD

10 Draw a scale diagram of a velocity vector of 5 km/h with a bearing of 315 o.
11 P and Q are the midpoints of sides AB and BC.
Let

¡!

AP=p and

¡!

BQ=q.
a Find vector expressions for:
i

¡!

PB ii

¡!

QC iii

¡!

PQ iv

¡!

AC

b How are

¡!

PQ and

¡!

AC related?
c Copy and complete:
“the line joining the midpoints of two sides of a triangle is ....... to the third side and ....... its
length”.

ab

m
n

A

D

C
B

M

A

B

C

Q

P

If K is(3 1),¡ and L is(2 5), , find:

Vectors (Chapter 24) 503

IGCSE01
cyan magenta yellow black

(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\IGCSE01\IG01_24\503IGCSE01_24.CDR Monday, 27 October 2008 2:27:27 PM PETER

Free download pdf