Review set 24B
#endboxedheading
1 On grid paper draw the vectors:
a p=
μ
1
4
¶
b q=
μ
¡ 3
¡ 1
¶
c r=
μ
5
¡ 2
¶
2 Write in the form
μ
x
y
¶
:
3 Draw a vector diagram to represent a displacement of 200 km in a westerly direction.
4 An aeroplane needs to fly due east to get to its destination. In still air it can travel at 400 km/h.
However, a 40 km/h wind is blowing from the south.
a Draw a vector diagram which shows clearly the direction that the aeroplane must head in.
b What will be the actual speed of the aeroplane and its bearing to the nearest degree?
5
a
¡!
LK b
̄
̄ ̄¡LK!
̄
̄ ̄
6 Findngiven that
μ
¡ 2
¡ 3
¶
and
μ
n
9
¶
are parallel vectors.
7 Suppose d=
μ
3
1
¶
and e=
μ
¡ 2
2
¶
.
a Draw a vector diagram to illustrate d¡e. b Find d¡e in component form.
c Find: i 2 e+3d ii 4 d¡ 3 e
8 What results when opposite vectors are added?
9 If
¡!
AB=p and
¡!
BC=q and ABCD is a parallelogram,
find vector expressions for:
a
¡!
CD b
¡¡!
BM c
¡¡!
MD d
¡!
AD
10 Draw a scale diagram of a velocity vector of 5 km/h with a bearing of 315 o.
11 P and Q are the midpoints of sides AB and BC.
Let
¡!
AP=p and
¡!
BQ=q.
a Find vector expressions for:
i
¡!
PB ii
¡!
QC iii
¡!
PQ iv
¡!
AC
b How are
¡!
PQ and
¡!
AC related?
c Copy and complete:
“the line joining the midpoints of two sides of a triangle is ....... to the third side and ....... its
length”.
ab
m
n
A
D
C
B
M
A
B
C
Q
P
If K is(3 1),¡ and L is(2 5), , find:
Vectors (Chapter 24) 503
IGCSE01
cyan magenta yellow black
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\IGCSE01\IG01_24\503IGCSE01_24.CDR Monday, 27 October 2008 2:27:27 PM PETER