We see that u 1 =2£ 30
u 2 =2£ 31
u 3 =2£ 32
u 4 =2£ 33 so each time the power of 3 is one less than theterm number.
So, a general formula for the sequence is un=2£ 3 n¡^1.
Example 6 Self Tutor
Find the nexttwoterms and a formula for thenth term of:
a 2 , 6 , 18 , 54 , ...... b 2 ,¡ 6 , 18 ,¡ 54 , ......^2 £(¡3)
n¡ 1
cannot be
simplified unless
we know the
value ofn.
a To get each term we multiply
the previous one by 3.
u 1 =2£ 30
u 2 =2£ 31
u 3 =2£ 32
u 4 =2£ 33
u 5 =2£ 34 = 162
u 6 =2£ 35 = 486
) un=2£ 3 n¡^1
b To get each term we multiply
the previous one by¡ 3.
u 1 =2£(¡3)^0
u 2 =2£(¡3)^1
u 3 =2£(¡3)^2
u 4 =2£(¡3)^3
u 5 =2£(¡3)^4 = 162
u 6 =2£(¡3)^5 =¡ 486
) un=2£(¡3)n¡^1
EXERCISE 26C
1 List the firstfiveterms of the geometric sequence defined by:
a un=3£ 2 n b un=3£ 2 n¡^1 c un=3£ 2 n+1
d un=5£ 2 n¡^1 e un=24£(^12 )n¡^1 f un=36£(^13 )n¡^1
g un=24£(¡2)n h un=8(¡1)n¡^1 i un=8(¡^12 )n
2 Find the nexttwoterms and a formula for thenth term of:
abc
de f
gh i
j
Example 5 Self Tutor
List the firstfiveterms of the geometric sequence defined by:
a un=5£ 2 n b un=5£ 2 n¡^1
a u 1 =5£ 21 =10
u 2 =5£ 22 =20
u 3 =5£ 23 =40
u 4 =5£ 24 =80
u 5 =5£ 25 = 160
b u 1 =5£ 20 =5
u 2 =5£ 21 =10
u 3 =5£ 22 =20
u 4 =5£ 23 =40
u 5 =5£ 24 =80
1 ,¡ 1 , 1 ,¡ 1 , 1 , ...... ¡ 1 , 1 ,¡ 1 , 1 ,¡ 1 , ...... 2 , 4 , 8 , 16 , 32 , ......
2 ,¡ 4 , 8 ,¡ 16 , 32 , ...... 6 , 18 , 54 , 162 , ...... 6 ,¡ 18 , 54 ,¡ 162 , ......
4 , 12 , 36 , 108 , ...... 2 ,¡ 14 , 98 ,¡ 686 , ...... 3 ,¡ 6 , 12 ,¡ 24 , ......
¡ 16 , 8 ,¡ 4 , 2 , ......
538 Sequences (Chapter 26)
IGCSE01
cyan magenta yellow black
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\IGCSE01\IG01_26\538IGCSE01_26.CDR Monday, 27 October 2008 2:36:13 PM PETER