Cambridge International Mathematics

(Tina Sui) #1
b u 1 =1, u 2 =3, u 3 =6, u 4 =10, u 5 =15, u 6 =21

The difference table is: n 123456
un 136101521
¢1 234 5 6
¢2 11 1 1

The¢2values are constant, so the sequence is quadratic with general term un=an^2 +bn+c.
2 a=1,soa=^12
3 a+b=2,so^32 +b=2 and ) b=^12
a+b+c=1,so^12 +^12 +c=1 and ) c=0

) the general term is un=^12 n^2 +^12 n

Example 9 Self Tutor


Find a formula for the general termunof the sequence: ¡ 6 ,¡ 4 , 10 , 42 , 98 , 184 , ......

The difference table is: n 12 3 4 5 6
un ¡ 6 ¡ 4104298184
¢1 2 14325686
¢2 12 18 24 30
¢3 666

The¢3values are constant, so the sequence is cubic with general term un=an^3 +bn^2 +cn+d.

6 a=6,soa=1
12 a+2b=12,so12 + 2b=12 and ) b=0
7 a+3b+c=2,so7+c=2 and ) c=¡ 5
a+b+c+d=¡ 6 ,so 1 ¡5+d=¡ 6 and ) d=¡ 2

) un=n^3 ¡ 5 n¡ 2

For quadratic and cubic sequences, an alternative to writing the general difference tables down on the spot
is to only use the difference table to identify the form of the sequence.

We can then use thequadraticor cubic regressionfunctions on our graphics calculator to find the
coefficients. Instructions for doing this are found on page 27.
ForExamples 8and 9 above, the results are:

the general term is

542 Sequences (Chapter 26)

IGCSE01
cyan magenta yellow black

(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\IGCSE01\IG01_26\542IGCSE01_26.CDR Monday, 27 October 2008 2:36:25 PM PETER

Free download pdf