7 Consider the pattern:
a Supposeunis the number of squares contained in thenth figure, sou 1 =2andu 2 =6+2=8.
Find the values ofu 3 ,u 4 ,u 5 andu 6.
b Find a formula for un.
c How many squares are contained in the 15 th figure?
Review set 26A
#endboxedheading
1 Write down a rule for the sequence and find its next two terms:
a 6 , 10 , 14 , 18 , 22 , ...... b 810 , 270 , 90 , 30 , ......
2
ab
3 Find the first four terms of the sequence withnth term:
a un=6n¡ 1 b un=n^2 +5n¡ 2
4aFind a formula for the general termunof the sequence: 4 , 8 , 12 , 16 , ......
b Hencefind un for:
i 1 , 5 , 9 , 13 , ...... ii^13 ,^17 , 111 , 151 , ......
c Find the 20 th term for each of the sequences inb.
5 List the first four terms of the geometric sequence defined by:
a un=27£(^23 )n b un=5£(¡2)n¡^1
6 Find un for the sequence:
a 3 , 12 , 48 , 192 , ...... b 88 ,¡ 44 , 22 ,¡ 11 , ......
7 Use the method of differences to find the general term un of:
a 5 , 12 , 19 , 26 , 33 , ...... b ¡ 1 , 6 , 15 , 26 , 39 , 54 , ......
8 Consider the figures:
Suppose un is the number of triangles in thenth figure, so u 1 =1and u 2 =5( 4 small
triangles and 1 large triangle).
a Find un for n=3, 4 , 5.
b Use the method of differences to find a formula for un.
c How many triangles are in the 50 th figure?
,
,
,
,.....
, , , .....
, , , .....
, , , .....
Draw the next matchstick figures in the pattern and write down the number of matchsticks
used as a number sequence:
two
544 Sequences (Chapter 26)
IGCSE01
cyan magenta yellow black
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\IGCSE01\IG01_26\544IGCSE01_26.CDR Monday, 27 October 2008 2:36:31 PM PETER