Cambridge International Mathematics

(Tina Sui) #1
Proof: Opposite angles of a cyclic quadrilateral

Join OA and OC.

Let ADCb =®o and AbBC= ̄o
) AOCb =2®o fangle at the centreg
and reflex AOCb =2 ̄o fangle at the centreg
But 2 ®+2 ̄= 360 fangles at a pointg
) ®+ ̄= 180
) ABCb +ADCb = 180o

and since the angles of any quadrilateral add to 360 o,
BADb +BbCD= 180o

Proof: Exterior angle of a cyclic quadrilateral

This theorem is an immediate consequence of the opposite angles
of a cyclic quadrilateral being supplementary.

Let AbBC=μo
) ADCb = (180¡μ)o fopp. angles of cyclic quad.g
) CDEb =μo fangles on a lineg
) AbBC=CDEb

Example 3 Self Tutor


Solve forx:

The angles given are opposite angles of a cyclic quadrilateral.

) (x+ 15) + (x¡21) = 180
) 2 x¡6 = 180
) 2 x= 186
) x=93

O



2°a
2°b

A

B C

D

O


A

B C

D
E

()180¡-¡q°

()x-21°

()x¡+¡15°

Circle geometry (Chapter 27) 557

IGCSE01
cyan magenta yellow black

(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\IGCSE01\IG01_27\557IGCSE01_27.CDR Monday, 27 October 2008 2:40:46 PM PETER

Free download pdf