Proof: Opposite angles of a cyclic quadrilateral
Join OA and OC.
Let ADCb =®o and AbBC= ̄o
) AOCb =2®o fangle at the centreg
and reflex AOCb =2 ̄o fangle at the centreg
But 2 ®+2 ̄= 360 fangles at a pointg
) ®+ ̄= 180
) ABCb +ADCb = 180o
and since the angles of any quadrilateral add to 360 o,
BADb +BbCD= 180o
Proof: Exterior angle of a cyclic quadrilateral
This theorem is an immediate consequence of the opposite angles
of a cyclic quadrilateral being supplementary.
Let AbBC=μo
) ADCb = (180¡μ)o fopp. angles of cyclic quad.g
) CDEb =μo fangles on a lineg
) AbBC=CDEb
Example 3 Self Tutor
Solve forx:
The angles given are opposite angles of a cyclic quadrilateral.
) (x+ 15) + (x¡21) = 180
) 2 x¡6 = 180
) 2 x= 186
) x=93
O
b°
a°
2°a
2°b
A
B C
D
O
q°
A
B C
D
E
()180¡-¡q°
q°
()x-21°
()x¡+¡15°
Circle geometry (Chapter 27) 557
IGCSE01
cyan magenta yellow black
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\IGCSE01\IG01_27\557IGCSE01_27.CDR Monday, 27 October 2008 2:40:46 PM PETER