x ¡ 3 ¡ 2 ¡ 1 0 1 2 3
y
4aComplete the table of values shown for the function
f(x)=3x.
b Use the table of values inato graph y=f(x):
c On the same set of axes and without a table of values, graph:
i y=¡f(x) ii y=f(¡x) iii y=2f(x) iv y=f(2x):
5aClick on the icon to obtain a printable graph of y=2x.
Use the graph to estimate, to one decimal place, the value of:
i 20 :^7 ii 21 :^8 iii 2 ¡^0 :^5 :
b Check your estimates inausing the ^ key on your calculator.
c Use the graph to estimate, correct to one decimal place, the solution of the equation:
i 2 x=5 ii 2 x=1: 5 iii 2 x=¡ 1 :
6
7 For the following functions:
i sketch the graph ii find they-intercept iii find the equation of any asymptote.
a f(x)=(1:2)x b f(x)=2x¡ 1 c f(x)=2x¡^1 d f(x)=2x+1
e f(x)=3+2x f f(x)=2¡ 2 x g f(x)=
2 ¡x+1
3
h f(x) = 2(3¡x)+1
8 Explain why (¡2)x is undefined for some real numbersx.
9 Find the exponential function corresponding to the graph:
ab
Anexponential equationis an equation in which the unknown occurs as part of the exponent or index.
For example: 2 x=8 and 30 £ 3 x=7 are both exponential equations.
If 2 x=8, then 2 x=2^3. Thus x=3 is a solution, and it is in fact the only solution.
C EXPONENTIAL EQUATIONS [2.11]
Graph ofy=2x
P
t
400
()2 ¡16,
O
M
x
()3 ¡8,
()1 ¡72,
O
Find the image of:
a y=2x under the translation
¡¡ 1
3
¢
b y=3x under the translation
¡ 2
¡ 4
¢
c y=2¡x under:
i a reflection in thex-axis ii a reflection in they-axis iii a reflection in the line y=x
d y=3x under:
i a stretch with invariantx-axis and scale factor 2
ii a stretch with invarianty-axis and scale factor^13.
570 Exponential functions and equations (Chapter 28)
IGCSE01
cyan magenta yellow black
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\IGCSE01\IG01_28\570IGCSE01_28.CDR Tuesday, 28 October 2008 12:48:00 PM PETER