Cambridge International Mathematics

(Tina Sui) #1
Since f(x)=ax is a one-one function, if ax=ak then x=k.
If the base numbers are the same, we canequate indices.

Example 4 Self Tutor


Solve forx: a 2 x=32 b 3 x¡^2 =^19

a 2 x=32
) 2 x=2^5
) x=5

b 3 x¡^2 =^19
) 3 x¡^2 =3¡^2
) x¡2=¡ 2
) x=0

Example 5 Self Tutor


Solve forx: a 6 £ 3 x=54 b 4 x¡^1 =

¡ 1
2

¢ 1 ¡ 3 x

a 6 £ 3 x=54
) 3 x=9
) 3 x=3^2
) x=2

b 4 x¡^1 =

¡ 1
2

¢ 1 ¡ 3 x

) (2^2 )x¡^1 =(2¡^1 )^1 ¡^3 x
) 2(x¡1) =¡1(1¡ 3 x)
) 2 x¡2=¡1+3x
) ¡2+1=3x¡ 2 x
) x=¡ 1

EXERCISE 28C.1
1 Solve forx:
a 3 x=3 b 3 x=9 c 2 x=8 d 5 x=1
e 3 x=^13 f 5 x=^15 g 2 x= 161 h 5 x+2=25
i 2 x+2=^14 j 3 x¡^1 = 271 k 2 x¡^1 =32 l 31 ¡^2 x= 271
m 42 x+1=^12 n 9 x¡^3 =3 o (^12 )x¡^1 =2 p (^13 )^2 ¡x=9
2 Solve forx:
a 5 £ 2 x=40 b 6 £ 2 x+2=24 c 3 £

¡ 1
2

¢x
=12

d 4 £ 5 x= 500 e 8 £

¡ 1
2

¢x
=1 f 7 £

¡ 1
3

¢x
=63

g 22 ¡^5 x=4x h 5 x¡^1 =

¡ 1
25

¢x
i 9 x¡^2 =

¡ 1
3

¢ 3 x¡ 1

j 2 x£ 42 ¡x=8 k 3 x+1£ 9 ¡x=

¡ 1
3

¢x+1
l 2 x

(^2) ¡ 2 x
=8
3 If a£ 5 n= 150 and a£ 10 n= 600, findaandn. Hint: Consider
a£ 10 n
a£ 5 n


.

4 Findbandtgiven that b£ 2 t=8and b£ 6 t= 1944.

5 Suppose 2 x+3y=32and 32 x¡y= 811. Findxandy.

If we can make the
base numbers the
same then we can
equate the indices.

Exponential functions and equations (Chapter 28) 571

IGCSE01
cyan magenta yellow black

(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\IGCSE01\IG01_28\571IGCSE01_28.CDR Monday, 27 October 2008 2:43:51 PM PETER

Free download pdf