Proof(for a triangle with acute angleA):
Consider triangle ABC shown.Using Pythagoras’ theorem, we findb^2 =h^2 +x^2 ,soh^2 =b^2 ¡x^2
and a^2 =h^2 +(c¡x)^2
Thus, a^2 =(b^2 ¡x^2 )+(c¡x)^2
) a^2 =b^2 ¡x^2 +c^2 ¡ 2 cx+x^2
) a^2 =b^2 +c^2 ¡ 2 cx ::::::(1)But in¢ACN, cosA=x
band so x=bcosASo, in (1), a^2 =b^2 +c^2 ¡ 2 bccosASimilarly, we can show the other two equations to be true.Challenge: Prove theCosine Rule a^2 =b^2 +c^2 ¡ 2 bccosA, in the case whereAis an obtuse angle.
You will need to use cos(180o¡μ)=¡cosμ:We use thecosine rulewhen we are given:
² two sidesand theincluded anglebetween them, or
² three sides.Useful rearrangements of the cosine rule are:cosA=b^2 +c^2 ¡a^2
2 bc, cosB=a^2 +c^2 ¡b^2
2 ac, cosC=a^2 +b^2 ¡c^2
2 abThey can be used if we are given all three side lengths of a triangle.Example 8 Self Tutor
Find, correct to 2 decimal places,
the length of BC.By the cosine rule:a^2 =b^2 +c^2 ¡ 2 bccosA
) a=p
122 +10^2 ¡ 2 £ 12 £ 10 £cos 38o
) a¼ 7 : 41) BC is 7 : 41 m in length.ABCAbaxcx¡-¡hNA CB10 m38°
12 mA CB10 m38°
12 mamFurther trigonometry (Chapter 29) 589GEOMETRY
PACKAGEIGCSE01
cyan magenta yellow black(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\IGCSE01\IG01_29\589IGCSE01_29.CDR Friday, 31 October 2008 9:54:56 AM TROY