Cambridge International Mathematics

(Tina Sui) #1

Example 4 Self Tutor


Consider y=

x^4
5

. State which two variables are directly proportional and
determine the proportionality constantk.


Since y=

x^4
5

, y=^15 x^4 ) y/x^4 and k=^15.

yis directly proportional to the fourth power ofx, and the proportionality
constant k=^15.

Example 5 Self Tutor


SupposeTis directly proportional tod^2 and T= 100 when d=2. Find:
a Twhen d=3 b dwhen T= 200 if d> 0.

Method 1:
T/d^2
) T=kd^2 for some constantk.
When d=2, T= 100
) 100 =k£ 22
) 100 = 4k
) k=25
So, T=25d^2.
a When d=3, T=25£ 32
=25£ 9
= 225
b When T= 200,
200 = 25£d^2
) 8=d^2
) d=2

p
2 fas d> 0 g

Method 2:
T/d^2
a

d 2 3
T 100
dis multiplied by^32
) d^2 is multiplied by

¡ 3
2

¢ 2

) Tis multiplied by

¡ 3
2

¢ 2

) T= 100£

¡ 3
2

¢ 2
= 225

b d 2
T 100 200

Tis multiplied by 2
) d^2 is multiplied by 2
) dis multiplied by

p
2 fd> 0 g
) d=2£

p
2=2

p
2

Example 6 Self Tutor


Theperiodor time for one complete swing of a pendulum is directly proportional to
the square root of its length. When the length is 25 cm, the period is 1 : 00 seconds.
a If the length is 70 cm, find the period to 2 decimal places.
b What would the length be for a period of 2 seconds?

Since is directly
proportional to ,
whatever we multiply
by we must do the
same to.

T
d

T
d

2

2

£ 2

£Ew_

Variation and power modelling (Chapter 30) 609

IGCSE01
cyan magenta yellow black

(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\IGCSE01\IG01_30\609IGCSE01_30.CDR Monday, 27 October 2008 2:57:34 PM PETER

Free download pdf