Example 4 Self Tutor
Consider y=
x^4
5
. State which two variables are directly proportional and
determine the proportionality constantk.
Since y=
x^4
5
, y=^15 x^4 ) y/x^4 and k=^15.
yis directly proportional to the fourth power ofx, and the proportionality
constant k=^15.
Example 5 Self Tutor
SupposeTis directly proportional tod^2 and T= 100 when d=2. Find:
a Twhen d=3 b dwhen T= 200 if d> 0.
Method 1:
T/d^2
) T=kd^2 for some constantk.
When d=2, T= 100
) 100 =k£ 22
) 100 = 4k
) k=25
So, T=25d^2.
a When d=3, T=25£ 32
=25£ 9
= 225
b When T= 200,
200 = 25£d^2
) 8=d^2
) d=2
p
2 fas d> 0 g
Method 2:
T/d^2
a
d 2 3
T 100
dis multiplied by^32
) d^2 is multiplied by
¡ 3
2
¢ 2
) Tis multiplied by
¡ 3
2
¢ 2
) T= 100£
¡ 3
2
¢ 2
= 225
b d 2
T 100 200
Tis multiplied by 2
) d^2 is multiplied by 2
) dis multiplied by
p
2 fd> 0 g
) d=2£
p
2=2
p
2
Example 6 Self Tutor
Theperiodor time for one complete swing of a pendulum is directly proportional to
the square root of its length. When the length is 25 cm, the period is 1 : 00 seconds.
a If the length is 70 cm, find the period to 2 decimal places.
b What would the length be for a period of 2 seconds?
Since is directly
proportional to ,
whatever we multiply
by we must do the
same to.
T
d
T
d
2
2
£ 2
£Ew_
Variation and power modelling (Chapter 30) 609
IGCSE01
cyan magenta yellow black
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\IGCSE01\IG01_30\609IGCSE01_30.CDR Monday, 27 October 2008 2:57:34 PM PETER