Cambridge International Mathematics

(Tina Sui) #1
Thelogarithmic functionis f(x) = logaxwhere a> 0 , a 6 =1.

Consider f(x) = log 2 x which has graph y= log 2 x.

Since y= log 2 x,x=2y, we can obtain the table of values:

y ¡ 3 ¡ 2 ¡ 1 0 1 2 3
x^1814121248

Notice that:
² the graph of y= log 2 x is asymptotic to they-axis
² the domain of y= log 2 x is fxjx> 0 g
² the range of y= log 2 x is fyjy 2 Rg

THE INVERSE FUNCTION OF f(x) = logax


Given the functiony= logax, the inverse is x= logay finterchangingxandyg
) y=ax

So, f(x) = logax,f¡^1 (x)=ax

B THE LOGARITHMIC FUNCTION [3.10]


x
2 4 6 8

4
2

-2

-4

y

O

yx¡=¡logx

Logarithms (Chapter 31) 627

m log 7

¡p 3
7

¢
n log 2 (4

p
2) o logp 22 p log 2

³
1
4
p
2

́

q log 10 (0:01) r logp 24 s logp 3

¡ 1
3

¢
t log 3

³
1
9
p
3

́

4 Rewrite as logarithmic equations:
a y=4x b y=9x c y=ax d y=(

p
3)x
e y=2x+1 f y=3^2 n g y=2¡x h y=2£ 3 a

5 Rewrite as exponential equations:
a y= log 2 x b y= log 3 x c y= logax d y= logbn
e y= logmb f T= log 5

¡a
2

¢
g M=^12 log 3 p h G= 5 logbm
i P= logpbn

6 Rewrite the following, makingxthe subject:
a y= log 7 x b y=3x c y=(0:5)x d z=5x

e t= log 2 x f y=2^3 x g y=5

x 2
h w= log 3 (2x)
i z=^12 £ 3 x j y=^15 £ 4 x k D= 101 £ 2 ¡x l G=3x+1

7 Explain why, for all a> 0 , a 6 =1: a loga1=0 b logaa=1

IGCSE01
cyan magenta yellow black

(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\IGCSE01\IG01_31\627IGCSE01_31.CDR Tuesday, 18 November 2008 11:12:17 AM PETER

Free download pdf