Thelogarithmic functionis f(x) = logaxwhere a> 0 , a 6 =1.
Consider f(x) = log 2 x which has graph y= log 2 x.
Since y= log 2 x,x=2y, we can obtain the table of values:
y ¡ 3 ¡ 2 ¡ 1 0 1 2 3
x^1814121248
Notice that:
² the graph of y= log 2 x is asymptotic to they-axis
² the domain of y= log 2 x is fxjx> 0 g
² the range of y= log 2 x is fyjy 2 Rg
THE INVERSE FUNCTION OF f(x) = logax
Given the functiony= logax, the inverse is x= logay finterchangingxandyg
) y=ax
So, f(x) = logax,f¡^1 (x)=ax
B THE LOGARITHMIC FUNCTION [3.10]
x
2 4 6 8
4
2
-2
-4
y
O
yx¡=¡logx
Logarithms (Chapter 31) 627
m log 7
¡p 3
7
¢
n log 2 (4
p
2) o logp 22 p log 2
³
1
4
p
2
́
q log 10 (0:01) r logp 24 s logp 3
¡ 1
3
¢
t log 3
³
1
9
p
3
́
4 Rewrite as logarithmic equations:
a y=4x b y=9x c y=ax d y=(
p
3)x
e y=2x+1 f y=3^2 n g y=2¡x h y=2£ 3 a
5 Rewrite as exponential equations:
a y= log 2 x b y= log 3 x c y= logax d y= logbn
e y= logmb f T= log 5
¡a
2
¢
g M=^12 log 3 p h G= 5 logbm
i P= logpbn
6 Rewrite the following, makingxthe subject:
a y= log 7 x b y=3x c y=(0:5)x d z=5x
e t= log 2 x f y=2^3 x g y=5
x 2
h w= log 3 (2x)
i z=^12 £ 3 x j y=^15 £ 4 x k D= 101 £ 2 ¡x l G=3x+1
7 Explain why, for all a> 0 , a 6 =1: a loga1=0 b logaa=1
IGCSE01
cyan magenta yellow black
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\IGCSE01\IG01_31\627IGCSE01_31.CDR Tuesday, 18 November 2008 11:12:17 AM PETER