Example 3 Self Tutor
Find the inverse function f¡^1 (x) for: a f(x)=5x b f(x) = 2 log 3 x
a y=5x has inverse function x=5y
) y= log 5 x
So, f¡^1 (x) = log 5 x
b y= 2 log 3 x has inverse function
x= 2 log 3 y
)
x
2
= log 3 y
) y=3
x
2
So, f¡^1 (x)=3
x
2
EXERCISE 31B
1 Find the inverse function f¡^1 (x) for:
a f(x)=4x b f(x)=10x c f(x)=3¡x d f(x)=2£ 3 x
e f(x) = log 7 x f f(x)=^12 (5x) g f(x) = 3 log 2 x h f(x) = 5 log 3 x
i f(x) = logp 2 x
2aOn the same set of axes graph y=3x and y= log 3 x.
b State the domain and range of y=3x.
c State the domain and range of y= log 3 x.
3 Prove using algebra that if f(x)=ax then f¡^1 (x) = logax.
-5 5 x
5
-5
y
OO
y¡=¡2x
yx¡=¡logx
yx¡=¡
If f(x)=g(x),
graph y=f(x)
and y=g(x)
on the same set
of axes.
4 Use the logarithmic function log on your graphics calculator
to solve the following equations correct to 3 significant
figures. You may need to use the instructions on page 15.
628 Logarithms (Chapter 31)
For example, if f(x) = log 2 x then f¡^1 (x)=2x.
The inverse function y= log 2 x is the reflection of y=2x
in the line y=x.
a log 10 x=3¡x b log 10 (x¡2) = 2¡x
c log 10
¡x
4
¢
=x^2 ¡ 2 d log 10 x=x¡ 1
e log 10 x=5¡x f log 10 x=3x¡ 3
IGCSE01
cyan magenta yellow black
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\IGCSE01\IG01_31\628IGCSE01_31.CDR Tuesday, 18 November 2008 11:12:59 AM PETER