Cambridge International Mathematics

(Tina Sui) #1

Example 3 Self Tutor


Find the inverse function f¡^1 (x) for: a f(x)=5x b f(x) = 2 log 3 x

a y=5x has inverse function x=5y
) y= log 5 x
So, f¡^1 (x) = log 5 x

b y= 2 log 3 x has inverse function
x= 2 log 3 y
)

x
2

= log 3 y

) y=3

x
2

So, f¡^1 (x)=3

x
2

EXERCISE 31B


1 Find the inverse function f¡^1 (x) for:
a f(x)=4x b f(x)=10x c f(x)=3¡x d f(x)=2£ 3 x
e f(x) = log 7 x f f(x)=^12 (5x) g f(x) = 3 log 2 x h f(x) = 5 log 3 x
i f(x) = logp 2 x

2aOn the same set of axes graph y=3x and y= log 3 x.
b State the domain and range of y=3x.
c State the domain and range of y= log 3 x.

3 Prove using algebra that if f(x)=ax then f¡^1 (x) = logax.

-5 5 x

5

-5

y

OO

y¡=¡2x

yx¡=¡logx

yx¡=¡

If f(x)=g(x),
graph y=f(x)
and y=g(x)
on the same set
of axes.

4 Use the logarithmic function log on your graphics calculator
to solve the following equations correct to 3 significant
figures. You may need to use the instructions on page 15.

628 Logarithms (Chapter 31)

For example, if f(x) = log 2 x then f¡^1 (x)=2x.

The inverse function y= log 2 x is the reflection of y=2x
in the line y=x.

a log 10 x=3¡x b log 10 (x¡2) = 2¡x
c log 10

¡x
4

¢
=x^2 ¡ 2 d log 10 x=x¡ 1
e log 10 x=5¡x f log 10 x=3x¡ 3

IGCSE01
cyan magenta yellow black

(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\IGCSE01\IG01_31\628IGCSE01_31.CDR Tuesday, 18 November 2008 11:12:59 AM PETER

Free download pdf