EXERCISE 31C
1 Write as a single logarithm:
a log 3 2 + log 38 b log 29 ¡log 23 c 3 log 5 2 + 2 log 53
d log 3 8 + log 37 ¡log 34 e 1 + log 34 f 2 + log 35
g 1 + log 73 h 1 + 2 log 43 ¡3 log 45 i 2 log 3 m+ 7 log 3 n
j 5 log 2 k¡3 log 2 n
2 If log 2 7=p and log 2 3=q, write in terms ofpandq:
a log 221 b log 2
¡ 3
7
¢
c log 249 d log 227
e log 2
¡ 7
9
¢
f log 2 (63) g log 2
¡ 56
9
¢
h log 2 (5:25)
3 Writeyin terms ofuandvif:
a log 2 y= 3 log 2 u b log 3 y= 3 log 3 u¡log 3 v
c log 5 y= 2 log 5 u+ 3 log 5 v d log 2 y=u+v
e log 2 y=u¡log 2 v f log 5 y=¡log 5 u
g log 7 y= 1 + 2 log 7 v h log 2 y=^12 log 2 v¡2 log 2 u
i log 6 y=2¡^13 log 6 u j log 3 y=^12 log 3 u+ log 3 v+1
4 Without using a calculator, simplify:
a
log 216
log 24
b
logp 16
logp 4
c
log 525
log 5
¡ 1
5
¢ d
logm 25
logm
¡ 1
5
¢
Logarithms in base 10 are calledcommon logarithms.
y= log 10 x is often written as just y= logx, and weassumethe logarithm has base 10.
Your calculator has a log key which is for base 10 logarithms.
Discovery Logarithms
#endboxedheading
The logarithm of any positive number can be evaluated using the log key on your calculator. You will
1 Copy and complete: Number Number as a power of 10 logof number
10
100
1000
100 000 105 log(100000) = 5
0 : 1
0 : 001
D LOGARITHMS IN BASE 10 [3.10]
need to do this to evaluate the logarithms in this discovery.
630 Logarithms (Chapter 31)
What to do:
IGCSE01
cyan magenta yellow black
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\IGCSE01\IG01_31\630IGCSE01_31.CDR Friday, 31 October 2008 9:46:05 AM PETER