² if we want to findxsuch that f(x)< 0 , we graph y=f(x)and find values ofxwhere the function
isbelow thex-axis
² if we want to findxsuch that f(x)>g(x), we graph y=f(x) and y=g(x) on the same axes
and find values ofxfor which the graph of y=f(x) isabove y=g(x).
Example 1 Self Tutor
Solve the inequality: 5 ¡ 2 x¡x^2 < 0.
Using a graphics calculator we plot Y=5¡ 2 X¡X^2.
The graph cuts thex-axis when x¼¡ 3 : 45 and 1 : 45.
So, the solution is x<¡ 3 : 45 or x> 1 : 45
(to 3 significant figures).
Example 2 Self Tutor
Solve the inequality: 3+x> 2 x.
Using a graphics calculator we plot Y=2^X and
Y=3+X on the same set of axes.
Thex-coordinates of the points of intersection are:
x¼¡ 2 : 86 and 2 : 44.
The line y=3+x is above the exponential y=2x
when ¡ 2 : 86 <x< 2 : 44.
EXERCISE 32A
1 Solve forxusing technology:
a 1 ¡x< 3 b 3+x> 2 c 4 x¡ 1 > 5
d 2 ¡ 3 x 61 e^12 x¡ 1 > 0 f 3 ¡ 5 x 63 x+1
2
a x^2 ¡x¡ 6 > 0 b x^2 +x¡ 1260 c
d x^2 ¡ 2 x¡ 5 < 0 e 2 x^3 ¡ 5 x+6> 0 f x^3 ¡x^2 ¡ 2 x+1< 0
3 Solve forx:
a x^2 >x+3 b 3 x> 2 c 2 x> 4 ¡x^2
d x^2 > 2 x e 1 ¡x¡x^2 >
3
x
f
1
x
6 x^2 +1
4 Solve forx: sin(2x)> 0 : 461 for 0 o<x< 360 o
5 Solve forx: jxj+j 1 ¡ 2 xj< 3
O
y
x
-3 45. 1 45.
yxx¡=¡5¡-¡2 ¡-¡X
O x
y
-2 86-2 86.. 2.442.44
yx¡=¡3¡+¡
y¡=¡2x
Solve forx:
10 ¡x^2 ¡ 3 x> 0
640 Inequalities (Chapter 32)
IGCSE01
cyan magenta yellow black
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\IGCSE01\IG01_32\640IGCSE01_32.CDR Monday, 27 October 2008 3:06:11 PM PETER