Cambridge International Mathematics

(Tina Sui) #1
ANSWERS 675

EXERCISE 1H
1a(x+ 2)(x¡2) b(2 +x)(2¡x)
c(x+ 9)(x¡9) d(5 +x)(5¡x)
e(2x+ 1)(2x¡1) f(3x+ 4)(3x¡4)
g(2x+ 3)(2x¡3) h(6 + 7x)(6¡ 7 x)
2a3(x+ 3)(x¡3) b¡2(x+ 2)(x¡2)
c3(x+ 5)(x¡5) d¡5(x+ 1)(x¡1)
e2(2x+ 3)(2x¡3) f¡3(3x+ 5)(3x¡5)
3a(x+

p
3)(x¡

p
3) b no linear factors
c(x+

p
15)(x¡

p
15) d3(x+

p
5)(x¡

p
5)
e(x+1+

p
6)(x+1¡

p
6) f no linear factors
g(x¡2+

p
7)(x¡ 2 ¡

p
7)
h(x+3+

p
17)(x+3¡

p
17) i no linear factors
4a(x+ 3)(x¡1) b4(x+ 2)(x¡1)
c(x¡5)(x+3) d3(x+ 1)(3¡x)
e(3x+ 2)(x¡2) f(2x+ 3)(4x¡3)
g(3x¡1)(x+3) h 8 x(x¡1) i ¡3(4x+3)
5a(x¡1)m bA=x^2 ¡(x¡1)^2
=(x+[x¡1])(x¡[x¡1])
=(2x¡1)(1)
=2x¡ 1 square metres
EXERCISE 1I
1a(x+3)^2 b(x+4)^2 c (x¡3)^2
d(x¡4)^2 e(x+1)^2 f (x¡5)^2
g(y+9)^2 h(m¡10)^2 i (t+6)^2
2a(3x+1)^2 b(2x¡1)^2 c (3x+2)^2
d(5x¡1)^2 e(4x+3)^2 f (5x¡2)^2
g¡(x¡1)^2 h¡2(x+2)^2 i ¡3(x+5)^2
3ax^2 +12x+36=(x+6)^2 and no perfect square is ever
negative for realx.
bConsider x^2 ¡ 4 x+4
x^2 ¡ 4 x+4=(x¡2)^2
where (x¡2)^2 > 0 for all realx
) x^2 ¡ 4 x+4> 0
) x^2 +4> 4 x for all realx
EXERCISE 1J
1a(b+ 2)(a+1) b(a+ 4)(c+d) c (a+ 2)(b+3)
d(m+p)(n+3) e(x+ 3)(x+7) f (x+ 4)(x+5)
g(2x+1)(x+3) h (3x+2)(x+4) i (5x+3)(4x+1)
2a(x+ 5)(x¡4) b(x+ 2)(x¡7) c (x¡3)(x¡2)
d(x¡5)(x¡3) e (x+ 7)(x¡8) f (2x+ 1)(x¡3)
g(3x+2)(x¡4) h(4x¡3)(x¡2) i (9x+2)(x¡1)
EXERCISE 1K
1a 3 , 4 b 3 , 5 c 2 , 8 d 2 , 9 e ¡ 3 , 7
f 3 ,¡ 7 g¡ 6 , 2 h ¡ 2 , 15
2a(x+ 1)(x+3) b(x+ 12)(x+2)c (x+ 3)(x+7)
d(x+ 6)(x+9) e(x+ 4)(x+5) f (x+ 3)(x+5)
g(x+ 4)(x+6) h(x+ 2)(x+7) i (x+ 2)(x+4)
3a(x¡1)(x¡2) b(x¡1)(x¡3) c (x¡2)(x¡3)
d(x¡3)(x¡11) e(x¡3)(x¡13) f (x¡3)(x¡16)
g(x¡4)(x¡7) h(x¡2)(x¡12) i (x¡2)(x¡18)

4 a(x¡8)(x+1) b(x+ 7)(x¡3) c (x¡2)(x+1)
d(x¡4)(x+2) e(x+ 8)(x¡3) f (x¡5)(x+2)
g(x+ 9)(x¡6) h(x+ 9)(x¡8) i (x¡7)(x+3)
j (x¡3)(x+2) k(x¡12)(x+5) l (x+ 12)(x¡5)
m(x+ 6)(x¡3) n(x+ 2)(x¡9) o(x¡5)(x¡7)
5 a(x+ 6)(x+1) b(x¡9)(x+7) c (x¡2)(x¡9)
d(x+ 8)(x¡2) e(x¡1)(x¡4) f (x+ 7)(x+5)
g(x¡5)(x+4) h(x¡11)(x+2) i (x+ 12)(x¡4)
j (x¡7)(x+4) kx(x+ 13) l (x¡7)^2
6a2(x+1)(x+4) b3(x¡1)(x¡6) c 2(x+3)(x+4)
d2(x¡10)(x¡12) e4(x¡3)(x+1) f 3(x¡3)(x¡11)
g2(x¡10)(x+9) h3(x¡4)(x+2) i 2(x+4)(x+5)
j x(x¡8)(x+1) k4(x¡3)^2 l 7(x+ 5)(x¡2)
m5(x¡8)(x+2) nx(x¡7)(x+4) o x^2 (x+1)^2
7a¡(x+9)(x¡6) b¡(x+2)(x+5) c ¡(x+3)(x+7)
d¡(x¡3)(x¡1) e ¡(x¡2)^2 f ¡(x+ 3)(x¡1)
g¡(x¡8)(x+6) h ¡(x¡3)^2 i ¡(x¡3)(x¡7)
j ¡2(x¡9)(x+7) k ¡2(x¡5)^2 l ¡x(x¡2)(x+1)
EXERCISE 1L
1a(2x+3)(x+1) b(2x+5)(x+1) c (7x+2)(x+1)
d(3x+4)(x+1) e(3x+1)(x+4) f (3x+2)(x+2)
g(4x+1)(2x+3) h(7x+1)(3x+2) i (3x+1)(2x+1)
j (6x+1)(x+3) k(5x+1)(2x+3) l (7x+1)(2x+5)
2a(2x+1)(x¡5) b(3x¡1)(x+2) c (3x+1)(x¡2)
d(2x¡1)(x+2) e(2x+5)(x¡1) f (5x+1)(x¡3)
g(5x¡3)(x¡1) h (11x+2)(x¡1) i (3x+2)(x¡3)
j (2x+3)(x¡3) k(3x¡2)(x¡5) l (5x+2)(x¡3)
m(3x¡2)(x+4) n(2x¡1)(x+9) o (2x¡3)(x+6)
p(2x¡3)(x+7) q(5x+2)(3x¡1) r(21x+1)(x¡3)
3a(3x+2)(5x+3) b(3x+2)(5x¡3) c (3x¡2)(5x+3)
d2(3x¡2)(5x¡3) e 2(3x¡1)^2 f 3(4x+3)^2
g2(4x+ 1)(2x+1) h 2(4x¡1)(2x+1)
i 5(4x+ 1)(2x¡1) j 4(4x¡1)(2x¡1)
k(5x+3)(5x+2) l (5x¡3)(5x¡2) m (5x¡4)(5x+2)
n(25x+1)(x¡6) o(6x+5)(6x¡1) p(9x+5)(4x¡1)
q(12x¡5)(3x+2) r (18x¡1)(2x+3)
EXERCISE 1M
1ax(3x+2) b(x+ 9)(x¡9) c 2(p^2 +4)
d3(b+ 5)(b¡5) e2(x+ 4)(x¡4)
fn^2 (n+ 2)(n¡2) g(x¡9)(x+1) h (d+ 7)(d¡1)
i (x+ 9)(x¡1) j 4 t(1 + 2t) k 3(x+ 6)(x¡6)
l 2(g¡11)(g+5)m (2a+3d)(2a¡ 3 d)
n5(a¡2)(a+1) o 2(c¡3)(c¡1)
px^2 (x+ 1)(x¡1) qd^2 (d+ 3)(d¡1) rx(x+2)^2
2a(x¡3)^2 b(x+ 11)(x¡11) c(x¡1)^2
d(y+5)^2 e (x+11)^2 f (x¡y)^2 g(1+x)(1¡x)
h(5y+ 1)(5y¡1) i (7y+6z)(7y¡ 6 z) j (2d+7)^2
ka(2b+c)(2b¡c) l 2 ¼(R+r)(R¡r)
3aa(b+c¡2) b ab(ab¡2) c 2 x(3 +x)(3¡x)
d(x+7)^2 e 4 a(a+b)(a¡b) f xy(x+ 2)(x¡2)
g 4 x^2 (x+1)(x¡1) h(x¡2)(y¡z) i (a+b)(x+1)
j (x¡y)(a+1) k(x+ 2)(x+3) l (x^2 + 1)(x+1)
4a7(x¡ 5 y) b 2(g+ 2)(g¡2) c ¡ 5 x(x+2)
dm(m+3p) e (a+ 3)(a+5) f (m¡3)^2
g 5 x(x+y¡xy) h(x+ 2)(y+2) i (y+ 5)(y¡9)
j (2x+1)(x+5) k3(y+7)(y¡7) l 3(p+q)(p¡q)
m(2c+1)(2c¡1) n3(x+4)(x¡3) o2(b+5)(x¡3)

IB MYP_3 ANS
cyan magenta yellow black

(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\IGCSE01\IG01_an\675IB_IGC1_an.CDR Tuesday, 18 November 2008 2:34:39 PM PETER

Free download pdf