Cambridge International Mathematics

(Tina Sui) #1
ANSWERS 679

6a

biP\Q=f 2 g iiP[Q=f 2 , 3 , 4 , 5 , 6 , 7 , 8 g
iii Q^0 =f 1 , 3 , 5 , 7 , 9 , 10 g
cin(P^0 )=6 iin(P\Q)=1iii n(P[Q)=7
dtrue
7aThe shaded region is the complement ofX, i.e., everything
not inX.
bThe shaded region represents ‘in exactly one ofXorYbut
not both’.
cThe shaded region represents everything inXor in neither
set.
8

109 took part

Review set 8A


1a ifalse iifalse b 0 :51 =^5199 , and 51 , 99 are integers
cftjt 6 ¡ 3 ort> 4 g d

2

3a b

c

4aA\B=f 1 , 2 , 3 , 6 g
bA[B=f 1 , 2 , 3 , 4 , 6 , 8 , 9 , 12 , 18 , 24 g
5a

biA^0 =f 1 , 4 , 6 , 8 , 9 , 10 g iiA\B=f 3 , 5 , 7 g
cifalse iitrue di 4 ii 5 iii 6

6a b

c

7

Area shaded is the same in each case.
8

x=5
) 5 were members of
all 3 clubs

EXERCISE 3A.1
1ax=¡ 11 b x=¡ 3 cx=¡ 7 d x=¡ 3
ex=5 f x=9 gx=1 h x=¡ 5
i x=¡ 2 j x=3 kx=¡ 112 l x=¡ 6
2ax=11 b x=¡ 512 cx=¡ 4 d x=3^12
ex=1 f x=11 gx=¡ 6 h x=11
i x=¡^12 j x=¡ 2 kx=4 l x=¡ 9
3ax=28 b x=¡ 15 cx=¡ 16 d x=¡ 12
ex=19 f x=¡ 11 gx=10 h x=24
4ax=¡ 512 b x=¡ 3 cx=17 d x=¡ 7
ex=3 f x=8^12
EXERCISE 3A.2
1ax=9 b x=¡ 12 cx=1 d x=¡ 2
ex=2^23 f x=¡ 3
2ax=¡ 3 b x=6 cx=2 d x=3
ex=2 f x=1
3ax=6 b x=¡ 3 cx=1^15 d x=¡ 3
ex=¡ 312 f x=¡ 4
4ax=3 b x=2 cx=2 d x=6^12
ex=1 f x=6
5ax=0 b x=2 cx=3 d x=3
ex=¡ 1 f x=¡^79 gx=¡ 5 h x=6
i x=3^12 j x=^23 kno solution
l infinite number of solutions (true for allx)

U

P Q
3
5

2
4

(^16)
(^910)
7
8
U
S F
() (^0) G
() 32 ()^8 () 20
() 10
() 5 (1 ) 5
() 19
R
Q
Z
N
~` 2
3"1
-1
2
p
4.2
_
3 7 x
U
A B
10
14
12
11
13
(^15) U
R
S
U
A
C B
U
A 3 B
2 5
9
(^6810)
7
1
4
U
A B
U
A B
U
A B
representsA\B representsA[C
representsC representsB[C
whole shaded region represents
represents(A\B)[C (A[C)(B[C)
U
A B
C U
A B
C
U
J D
R
()x+15 () 15 - x ()x+25
()x
()20-x ()10-x
()x+20
() 10
IB MYP_3 ANS
cyan magenta yellow black
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\IGCSE01\IG01_an\679IB_IGC1_an.CDR Thursday, 20 November 2008 4:06:40 PM PETER

Free download pdf