ANSWERS 711
3a(4^12 ,6)
b(0,2)4a iy=2x ii y=2x
biy=¡x+8 ii y=¡x+^43
ciy=2x+9 ii y=2x
EXERCISE 20E
1a bcd2a b3a(3,¡4) b(4,10) c(¡ 1 ,1) d(4^12 ,¡4)
e(^34 , 134 )
4aA^0 is(1,3),B^0 is(4,1)
C^0 is(2,9)bA^0 is(0,2),B^0 is(1^12 ,1)
C^0 is(^12 ,5)
5aVertical stretch of factor k=^34 with invariantx-axis.
bHorizontal stretch of factork=2, with invarianty-axis.
cHorizontal stretch of factork=4, with invarianty-axis.
dHorizontal stretch of factork=^14 , withx=¡ 1 the
invariant line.6ay=6x b y=^94 x cy=^14 x+2^14EXERCISE 20F
1aby¡=f(x)+4is a vertical translation ofy=f(x)through
0
4¢
.
y=f(x+4) is a horizontal translation of y=f(x)
through¡¡ 4
0¢
.
2abia horizontal translation of¡ 3
0¢
ii a translation of¡ 3
1¢
3aby=¡ 1
cy=¡ 1
4abpoints on thex-axis, i.e., (^12 ,0)ILA BCA'
B'
C'ILABCDA'B'D'C'ILP
QRS
R'S'Q'P'ILY' X
ZW
Z' X'W'Y
yx
Ox¡=¡1IL22
ABCk¡=¡¡Ew_
B'A' C'y
x
O2ILy¡=¡-2PQ
RSk¡=¡¡Qw_2R'S' Q'P'yO 2462468A
A' B' BC'Cx
-2y x¡=¡-1O 2462468AA'BB'CC'-2 xy¡=¡1x
4-410-2y
yx¡=¡3 ¡-¡2¡=¡¦()x
yx¡=¡¦ ¡+¡4()yx¡=¡¦()¡+¡4x
-4 -2 2 46
4
2yy¡=¡-1y¡=¡2 ¡=¡¦x ()xyx= ¦ ¡-¡3()yx= ¦()¡-¡111 ()3 ¡1,2 x
-22yyx¡=¡2 ¡-¡1¡=¡¦()xyxx¡=¡3¦()¡=¡6 ¡-¡3(\Qw_\' 0)-2-2x
-2 2 46
4
2yy¡=¡-1ygx¡= ¡\(Qw_\)x¡=¡( )yx=g()¡-¡1611x
-1 11 22 3344
33
22
11-1-1
-2-2yO
y=g(x)- 1 =(^12 )x-^1 - 1y=g(x)=(^12 )x-^1IB MYP_3 ANS
cyan magenta yellow black(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\IGCSE01\IG01_an\711IB_IGC1_an.CDR Thursday, 20 November 2008 4:30:03 PM PETER