ANSWERS 711
3a(4^12 ,6)
b(0,2)
4a iy=2x ii y=2x
biy=¡x+8 ii y=¡x+^43
ciy=2x+9 ii y=2x
EXERCISE 20E
1a b
c
d
2a b
3a(3,¡4) b(4,10) c(¡ 1 ,1) d(4^12 ,¡4)
e(^34 , 134 )
4a
A^0 is(1,3),B^0 is(4,1)
C^0 is(2,9)
b
A^0 is(0,2),B^0 is(1^12 ,1)
C^0 is(^12 ,5)
5aVertical stretch of factor k=^34 with invariantx-axis.
bHorizontal stretch of factork=2, with invarianty-axis.
cHorizontal stretch of factork=4, with invarianty-axis.
dHorizontal stretch of factork=^14 , withx=¡ 1 the
invariant line.
6ay=6x b y=^94 x cy=^14 x+2^14
EXERCISE 20F
1a
by¡=f(x)+4is a vertical translation ofy=f(x)through
0
4
¢
.
y=f(x+4) is a horizontal translation of y=f(x)
through
¡¡ 4
0
¢
.
2a
bia horizontal translation of
¡ 3
0
¢
ii a translation of
¡ 3
1
¢
3a
by=¡ 1
c
y=¡ 1
4a
bpoints on thex-axis, i.e., (^12 ,0)
IL
A B
C
A'
B'
C'
IL
A
B
C
D
A'
B'
D'
C'
IL
P
Q
R
S
R'
S'
Q'
P'
IL
Y' X
Z
W
Z' X'
W'
Y
y
x
O
x¡=¡1
IL
2
2
A
B
C
k¡=¡¡Ew_
B'
A' C'
y
x
O
2
IL
y¡=¡-2
P
Q
R
S
k¡=¡¡Qw_
2
R'
S' Q'
P'
y
O 246
2
4
6
8
A
A' B' B
C'C
x
-2
y x¡=¡-1
O 246
2
4
6
8
A
A'
B
B'
C
C'
-2 x
y¡=¡1
x
4
-4
10
-2
y
yx¡=¡3 ¡-¡2¡=¡¦()x
yx¡=¡¦ ¡+¡4()
yx¡=¡¦()¡+¡4
x
-4 -2 2 4
6
4
2
y
y¡=¡-1
y¡=¡2 ¡=¡¦x ()x
yx= ¦ ¡-¡3()
yx= ¦()¡-¡1
11 ()3 ¡1,
2 x
-2
2
y
yx¡=¡2 ¡-¡1¡=¡¦()x
yxx¡=¡3¦()¡=¡6 ¡-¡3
(\Qw_\' 0)
-2-2
x
-2 2 4
6
4
2
y
y¡=¡-1
ygx¡= ¡\(Qw_\)x¡=¡( )
yx=g()¡-¡1
6
11
x
-1 11 22 33
44
33
22
11
-1-1
-2-2
y
O
y=g(x)- 1 =(^12 )x-^1 - 1
y=g(x)=(^12 )x-^1
IB MYP_3 ANS
cyan magenta yellow black
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\IGCSE01\IG01_an\711IB_IGC1_an.CDR Thursday, 20 November 2008 4:30:03 PM PETER