724 ANSWERS
d
e
f
EXERCISE 23A.2
1af(x)=2(x+ 1)(x¡2)(x¡3)
bf(x)=¡2(x+ 3)(x+ 2)(2x+1)
c f(x)=^14 (x+4)^2 (x¡3)
2af(x)=2x^3 ¡ 5 x^2 ¡ 6 x+9
bf(x)=3x^3 ¡ 16 x^2 +15x+18
3 b=4,c=¡ 10 4 b=2,d=¡ 8
EXERCISE 23B
1af¡^1 (x)=x+7 bf¡^1 (x)=x¡^2
3
c f¡^1 (x)=
3 ¡ 4 x
2
df¡^1 (x)=^3
p
x
ef¡^1 (x)=^3
q
x¡ 1
2
f f¡^1 (x)=^3 x+1
4
gf¡^1 (x)=x^2 ¡ 1 ,x> 0 hf¡^1 (x)=
x^2 +5
3
, x> 0
i f¡^1 (x)=
1
x
+2
2a if¡^1 (x)=8¡x ii f¡^1 (x)=^9
x
bBoth functions are their own inverses.
3aFor f(x)=mx+c, m 6 =0,
f¡^1 (x)=^1
m
x¡c
m
which is linear asm 6 =0
bThe gradients are reciprocals.
c If (a,b)lies ony=f(x) thenb=ma+c
and f¡^1 (b)=^1
m
b¡c
m
=
b¡c
m
=ma
m
=a asm 6 =0
dif¡^1 (x)=4x+2 ii f¡^1 (x)=¡^32 x¡ 1
4b idoes iidoes not iii does iv does not
5a
This horizontal line cuts the
graph more than once.
) f¡^1 (x)does not exist.
b
Likewise, f¡^1 (x) does not
exist.
c
Likewise, f¡^1 (x) does not
exist.
6a i
ii
iii
b ...... a reflection ofy=f(x) in the line y=x.
7 From 6 , y=f¡^1 (x) is a reflection ofy=f(x) in the line
y=x. So, when x=k is reflected in y=x to become
y=k,y=kmust be a horizontal asymptote ofy=f¡^1 (x).
8a if¡^1 (x)=^2
x
+3
ii
@=2!W(!-3)
y
3 x
O
@=-Qr_(!-2)W(!+1)
y
x
2
-1 -1
O
@ =-3(! + 1)W(! -We_)
y
-1 x
2
We_
O
y
x
yx¡=¡X
O
y
O x
y
x
4
-2 O
yx¡=¡
yx¡=¡2 ¡+¡1¡=¡¦()x
2
f-^1 =x-^1
y
x
1
1
O
O
y
x
y fx f x x
= ()= -^1 ()=^2
yx¡=¡
y
x
y= x=f(x),x> 0
f-^1 (x)=x^2 ,x> 0
O
y
x
3
()^2
fx=x-
y=f-^1 (x)
y¡=¡3
x¡=¡3
yx¡=¡
O
IB MYP_3 ANS
cyan magenta yellow black
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\IGCSE01\IG01_an\724IB_IGC1_an.CDR Thursday, 20 November 2008 4:49:18 PM PETER