Cambridge International Mathematics

(Tina Sui) #1
ANSWERS 733

11 fHHHH, HHHT, HHTH, HTHH, THHH, HHTT, HTHT, HTTH,
THTH, TTHH, THHT, TTTH, TTHT, THTT, HTTT, TTTTg
a 161 b^38 c 165 d^1516 e^14
12 a

bi 131 ii 521 iii^14 iv 133 v 261 vi^12
vii 134 viii 0
13 a^1114 b 285 c 281
EXERCISE 25G.1
1a 101 b^15 2a 143 b 214
3a 218 b^17 c^27 4a 0 : 0441 b 0 : 6241
5a 152 b^25 c^15 d 154
6a i 0 : 405 ii 0 : 595 b 0 : 164 c 0 : 354
EXERCISE 25G.2
1a i 145 ii^1556 iii^1556 iv 283
bBecause these 4 events are the only possible outcomes. One
of them must occur.
2a i^13 ii 154 iii 158
bThe possibilities are: WW, WY, YW, YY.
The 3 events do not cover all these possibilities.
So, the probability sum should not be 1.
3a 141 b 561 c 281
EXERCISE 25H
1a b 254
c 251
d^1625

e^1625

2a i^59 ii^49
bci^2581

ii^1681
iii^2081

iv^4081

3a b^1180

40 : 034 5 2360 6a^2342 b^1942
EXERCISE 25I
1a^49 b^19
c^29 d^49

2a^27 b^17 c^27 d^47
3a^16 b 185 c 185 d 185
These cases cover all possibilities, so their probabilities must add
up to 1.
4a b 335
c 227

5a b 17128

c 17155

6a 251 b^2425 c 49757 ¼ 0 :001 41
d^45844975 ¼ 0 : 921 e 1998
EXERCISE 25J
1aAandB,AandD,AandE,AandF,BandD,
BandF,CandD
bi^23 ii^56 iii^23 iv^12 v 1 vi^56
2a 175 b 178 c 176 3 154
4a b i 121
ii 127

cP(H)+P(5)¡P(H and5) = 126 + 122 ¡ 121
= 127 =P(Hor5)
5a b i 181

ii^59

cP(3) +P(4)¡P(3and4) =^1136 +^1136 ¡ 362
=^59 =P(3or4)

suit

A

ª

©
̈
§

2 34 56 78910 JQK

card value

1st spin 2nd spin
B Y G B Y G B Y G
B

Y

G

Wt_

Wt_

Wt_

Wt_

Wt_ Wt_

Wt_

Wt_

Qt_

Qt_

Qt_

Qt_

win

win

muddy

not
muddy

lose

lose

Qr_

Er_

Wt_
Et_
wA_p_
Qw_Op_

tile 1 tile 2
G

G

G

B

B

B

To_

Ro_

To_
Ro_

To_
Ro_

1st ticket 2nd ticket
R

R

R

Y

Y

Y

We_

Qe_

We_
Qe_

We_
Qe_

1st egg 2nd egg
S

S

S

D

D

D

qJ_w_
qG_w_

qH_q_
qG_q_

qJ_q_
qF_q_

1st chocolate 2nd chocolate
H

H

H

S

S

S

qK_o_
Qq_Qo_

qJ_i_
Qq_Qi_

Ro_
To_

12

H

T

3 465

coin

die

die 1

die 2

1

1
2

2

3

3

4

4

5

5

6

6

IB MYP_3 ANS
cyan magenta yellow black

(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\IGCSE01\IG01_an\733IB_IGC1_an.CDR Thursday, 20 November 2008 10:42:15 AM PETER

Free download pdf