ANSWERS 743
2bandc3ay=8 b x=0: 4
4ay=18 bx=12
5ainversely bdirectly cdirectly
6aM=1: 6 bt=0: 4 7aP=30 b g=1: 44
8a 20 units b 4 cm^398 days
10 a 0 : 115 seconds b 400 units
11 heat is increased by525% 12 ¼ 8 : 94 m away
EXERCISE 30C
1ay=4x^3 by=3
p
x cy=
16
x
dy=
100
x^2
2 d=4
p
h 3 m=l
3
2
4 y=^10
x
5 Hint: Show thatx^2 y is a constant for all data points
y=
5
x^2
) k=5
6aShow that pT
l
is always constant bk=2
c¼ 2 : 83 seconds
7a
bR=kv^3 fas 3 rd graph is linearg
Show
R
v^3
is a constant to getR=0: 0005 x^3
EXERCISE 30D
1 Notice that(0,0)should not be entered.
2ay¼ 26 : 3 x¡^3 :^02 b M¼ 49 : 8 x¡^0 :^497
3ah¼ 265 m^0 :^624 joules
bIt seems appropriate for the given data asr^2 is very close to
1.
c¼53 900Joules. This could be unreliable as m= 5000
lies well outside the poles (0: 026 m 6 500).
4aR¼ 1 : 00 T^0 :^6667
bThe model seems very appropriate asr^2 is very close to 1.
cR^3 ¼T^2
5aV¼140 000P¡^0 :^714 (r^2 ¼1)
bi¼ 542 ml ii ¼ 252 ml
REVIEW SET 30A
1aa=^25 , b=4 2 229 km 36 : 75 days
4ak=4
by= 144
c x=4
5aP=4
p
Q bP=44 c Q¼ 10 : 6
61 : 60 seconds
7aVis multiplied by 4 b 26 :5%increase inr
8a
pp 1 2 3 4 5
D 36 18 12 9 7: 2
bThe graph seems to be asymptotic to the axes.
ck=36 d D¼ 10 : 0
9aR¼ 3 : 99 £d^2 :^51
br^2 is very close to 1 ,
) the power model seems appropriate
cR¼ 28 : 8 m^3 /s d ¼ 1730 m^3 each minute
REVIEW SET 30B
1 a=14, b=21
2ayis divided by 3 b xis decreased by 3313 %
3axy= 650 b y¼ 54 : 2 cx¼ 4 : 33
418 : 75 bags 5a 0 : 514 ohms b 0 : 08 cm^2
610 : 7 units 7areduced by 34 :4% b increased by 73 :2%
8ak=0: 4 ,n=3) V=0: 4 h^3
bwhen h=6, V=86: 4 X
cVolumes in general depend on 3 lengths multiplied together
di¼ 205 cm^3 iih=5cm
9aD¼ 31 : 8 n^0 :^413 mm
bi¼ 50 : 1 mm ii¼ 71 : 0 mm iii¼ 85 : 6 mm
iv ¼ 94 : 6 mm
cbivis least likely to be reliable.
CHALLENGE
1 velocity is decreased by ¼ 8 :71%
2ay=kxn ) y 1 =kx 1 n and y 2 =kx 2 n etc.
bsimilar argument
3b 223 550 km/h
EXERCISE 31A
1alog 2 4=2 blog 4 16 = 2
clog 3 9=2 dlog 5 125 = 3
elog 10 10 000 = 4 flog 7 (^17 )=¡ 1
glog 3 ( 271 )=¡ 3 hlog 27 (3) =^13
i log 5 ( 251 )=¡ 2 j log 2
³
p^1
2
́
=¡^12
klog 2 (4
p
2) = 2: 5 l log 10 (0:001) =¡ 3
2a 23 =8 b 20 =1 c 2 ¡^1 =^12
d 212 =
p
2 e 2 ¡^12 =p^12 f (
p
2)^2 =2
g(
p
3)^4 =9 h 9
(^12)
=3
3a 2 b 3 c 1 d 0 e 3
f¡ 1 g¡ 3 h 7 i ¡ 1 j ¡ 2
10
20
30
40
(^020000400006000080000)
vC
()1000 ¡0 5,.
()8000 ¡4,
()27000 ¡13.5,
()64000 ¡32,
R
10
20
30
40
(^0500100015002000)
R
vX
()100 ¡0 5,.
()400 ¡4, ()900 ¡13.5,
()1600 ¡32,
10
20
30
40
(^010203040)
R
0.5^4 v
13.5
32
10
20
30
40
0 1234 5
D
p
246
8
16
24
32
810
x^2
y
O
IB MYP_3 ANS
cyan magenta yellow black
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\IGCSE01\IG01_an\743IB_IGC1_an.CDR Thursday, 20 November 2008 1:54:38 PM PETER