Cambridge International Mathematics

(Tina Sui) #1
Algebra (Expansion and factorisation) (Chapter 1) 33

i ¡2(x+4) j ¡3(2x¡1) k x(x+3) l 2 x(x¡5)
m ¡3(x+2) n ¡4(x¡3) op¡2(x¡y)
q a(a+b) r ¡a(a¡b) s x(2x¡1) t 2 x(x^2 ¡x¡2)
2 Expand and simplify:
a 1+2(x+2) b 13 ¡4(x+3) c 3(x¡2) + 5
d 4(3¡x)¡ 10 e x(x¡1) +x f 2 x(3¡x)+x^2
g 2 a(b¡a)+3a^2 h 4 x¡ 3 x(x¡1) i 7 x^2 ¡ 5 x(x+2)

3 Expand and simplify:
a 3(x¡4) + 2(5 +x) b 2 a+(a¡ 2 b) c 2 a¡(a¡ 2 b)
d 3(y+ 1) + 6(2¡y) e 2(y¡3)¡4(2y+1) f 3 x¡4(2¡ 3 x)
g 2(b¡a)+3(a+b) h x(x+4)+2(x¡3) i x(x+4)¡2(x¡3)
j x^2 +x(x¡1) k ¡x^2 ¡x(x¡2) l x(x+y)¡y(x+y)
m ¡4(x¡2)¡(3¡x) n 5(2x¡1)¡(2x+3) o 4 x(x¡3)¡ 2 x(5¡x)

Consider the product (a+b)(c+d).

It has twofactors, (a+b) and (c+d).
We can evaluate this product by using the distributive law several times.

(a+b)(c+d)=a(c+d)+b(c+d)
=ac+ad+bc+bd

So, (a+b)(c+d)=ac+ad+bc+bd

The final result contains four terms:
ac is the product of the First terms of each bracket.
ad is the product of the Outer terms of each bracket.
bc is the product of the Inner terms of each bracket.
bd is the product of the Last terms of each bracket.

Example 3 Self Tutor


Expand and simplify: (x+ 3)(x+2):

(x+ 3)(x+2)

=x£x+x£2+3£x+3£ 2
=x^2 +2x+3x+6
=x^2 +5x+6

B THE PRODUCT(a+b)(c+d) [2.7]


This is sometimes
called theFOILrule.

In practice we do not
include the second line
of these examples.

¡(7¡ 2 x)

IGCSE01
cyan magenta yellow black

(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\IGCSE01\IG01_01\033IGCSE01_01.CDR Tuesday, 7 October 2008 12:46:18 PM PETER

Free download pdf