36 Algebra (Expansion and factorisation) (Chapter 1)
Example 8 Self Tutor
Expand and simplify:
a (2x¡3)(2x+3) b (5¡ 3 y)(5 + 3y) c (3x+4y)(3x¡ 4 y)
a (2x¡3)(2x+3)
=(2x)^2 ¡ 32
=4x^2 ¡ 9
b (5¡ 3 y)(5 + 3y)
=5^2 ¡(3y)^2
=25¡ 9 y^2
c (3x+4y)(3x¡ 4 y)
=(3x)^2 ¡(4y)^2
=9x^2 ¡ 16 y^2
EXERCISE 1C
1 Expand and simplify using the rule (a+b)(a¡b)=a^2 ¡b^2 :
a (x+ 2)(x¡2) b (x¡2)(x+2) c (2 +x)(2¡x)
d (2¡x)(2 +x) e (x+ 1)(x¡1) f (1¡x)(1 +x)
g (x+ 7)(x¡7) h (c+ 8)(c¡8) i (d¡5)(d+5)
j (x+y)(x¡y) k (4 +d)(4¡d) l (5 +e)(5¡e)
2 Expand and simplify using the rule (a+b)(a¡b)=a^2 ¡b^2 :
a (2x¡1)(2x+1) b (3x+ 2)(3x¡2) c (4y¡5)(4y+5)
d (2y+ 5)(2y¡5) e (3x+ 1)(3x¡1) f (1¡ 3 x)(1 + 3x)
g (2¡ 5 y)(2 + 5y) h (3 + 4a)(3¡ 4 a) i (4 + 3a)(4¡ 3 a)
3 Expand and simplify using the rule (a+b)(a¡b)=a^2 ¡b^2 :
a (2a+b)(2a¡b) b (a¡ 2 b)(a+2b) c (4x+y)(4x¡y)
d (4x+5y)(4x¡ 5 y) e (2x+3y)(2x¡ 3 y) f (7x¡ 2 y)(7x+2y)
4aUse the difference of two squares expansion to show that:
i 43 £37 = 40^2 ¡ 32 ii 24 £26 = 25^2 ¡ 12
b Evaluate without using a calculator:
i 18 £ 22 ii 49 £ 51 iii 103 £ 97 :
Discovery 1 The product of three consecutive integers
Con was trying to multiply 19 £ 20 £ 21 without a calculator. Aimee told him to ‘cube the middle
integer and then subtract the middle integer’ to get the answer.
What to do:
1 Find 19 £ 20 £ 21 using a calculator.
2 Find 203 ¡ 20 using a calculator. Does Aimee’s rule seem to work?
3 Check that Aimee’s rule works for the following products:
a 4 £ 5 £ 6 b 9 £ 10 £ 11 c 49 £ 50 £ 51
4 Let the middle integer bex, so the other integers must be(x¡1)and(x+1).
Find the product (x¡1)£x£(x+1) by expanding and simplifying. Have you proved Aimee’s
rule?
IGCSE01
cyan magenta yellow black
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\IGCSE01\IG01_01\036IGCSE01_01.CDR Wednesday, 10 September 2008 2:06:44 PM PETER