Ganong's Review of Medical Physiology, 23rd Edition

(Chris Devlin) #1
CHAPTER 2Overview of Cellular Physiology in Medical Physiology 55

is activated by heterotrimeric G proteins, while PLCγ forms are
activated through tyrosine kinase receptors. PLC isoforms can
catalyze the hydrolysis of the membrane lipid phosphatidyl-
inositol 4,5-diphosphate (PIP 2 ) to form IP 3 and diacylglycerol
(DAG) (Figure 2–25). The IP 3 diffuses to the endoplasmic


reticulum, where it triggers the release of Ca2+ into the cyto-
plasm by binding the IP 3 receptor, a ligand-gated Ca2+ chan-
nel (Figure 2–26). DAG is also a second messenger; it stays in
the cell membrane, where it activates one of several isoforms
of protein kinase C.

FIGURE 2–24 Structures of two G protein-coupled receptors. The individual amino acid residues are identified by their single-letter codes,
and the orange residues are sites of phosphorylation. The Y-shaped symbols identify glycosylation sites. Note the extracellular amino terminal, the
intracellular carboxyl terminal, and the seven membrane-spanning portions of each protein. (Reproduced with permission from Benovic JL et al: Light-
dependent phosphorylation of rhodopsin by β-adrenergic receptor kinase. Reprinted by permission from Nature 1986;321:869. Copyright © 1986 by Macmillan Magazines)


HDPVHSGNTTLLFDSDNGPPGM
VD
TE
ER
DE
WA
VV
IGLMMAS
VIV
VFLGVNI
TAI

LAIV

BLAIGNF
PVV
AVCLADL
STI

ALGM

NH 2

AK
F

MW
NFGN
FW
KM C

ERLQTVTN

FY

TESFIWD
VLC
LICEVTI
AVD

VTAS

AR
HT

KQ
AI

DCYHKET
CC
DF
FT
YWH N
MLQFISP
VVMILWI
VMR

TLQS
RY
IA
TI
SPF
KYQS
LL

KT

KN
A

AQIAAYS
SIV
VPMLVVF
VYSL

SFYV
RV
FQV
AKRQ

GQVEQDGRSG

LQKI
ESKD
RR

SS

KLCFK
AKHE
KL
T

HGL
PSHFRG
NL

QDN

LIP
IVH K
VIIFNFV
TLGTMFI
IG

PLWC
SPD
FRIAFQ
EL
LC
LR
R

IELVLYN
WLG
PALFINY
CR

YVNS

GY S

S
EGMYDTKGNGNSSYGN AKS
QEKESERL

GSA
CQ
LG TESFVNCQ
G

EDPPG
QSDLSLSPVT

C
HOOCLPSDNTSCNRG

 2 -Adrenergic receptor
Extracellular
surface

Cytoplasmic
surface

PSRVVCTKNSFPVYFNPGETG
EF
AP
QY
YL
AE
PW
QFSM
LMAFALY
IGNFFPL
TLY

LIML

TTTYTLF
QGF
ADLANVL
LIY

VMFL

NMNH 2

VT
V

GH

F
FY
V
GP
LE

GC
T
N
LS G

QHKKLRTP

NL

LFGAGTE
IAL
IVELRAY
VVV

WSLA

RS

IY

QM
C
EP
G

SCGIDY
YT
PH
EE
TN
WGV N
LAPCPAA
AWVTGFM
IAH

LAMV
CK
PMSNFRFG

NE

VEISYFM
FVV
VPILFIF
CYG M

HFII
QL
VF
TV
KEAAAQQQE T
T
SA

KEAKQ
TVE
R

T
HQGSDF
GP
FFAIVYQ
AYP
ILVFMAI
IV

LWCI
MN
KQFRNCM
VT
TL
CC
G

TIIFPMA
FFA
PVVYINY
IM

KTSA

HOOCAPAVQSTETKSVTTSAEDDGLPNK

Intradiskal Rhodopsin
surface

Cytoplasmic surface

F

FIGURE 2–25 Metabolism of phosphatidylinositol in cell membranes. Phosphatidylinositol is successively phosphorylated to form
phosphatidylinositol 4-phosphate (PIP), then phosphatidylinositol 4,5-bisphosphate (PIP 2 ). Phospholipase Cβ and phospholipase Cγ catalyze the
breakdown of PIP 2 to inositol 1,4,5-trisphosphate (IP 3 ) and diacylglycerol. Other inositol phosphates and phosphatidylinositol derivatives can also
be formed. IP 3 is dephosphorylated to inositol, and diacylglycerol is metabolized to cytosine diphosphate (CDP)-diacylglycerol. CDP-diacylglycerol
and inositol then combine to form phosphatidylinositol, completing the cycle. (Modified from Berridge MJ: Inositol triphosphate and diacylglycerol as second
messengers. Biochem J 1984;220:345.)


P
1

4

P

P

1

4

P

P P

1

4 5
5

P

P P

1

4

Phosphatidylinositol
(PI)

PIP PIP 2 Diacylglycerol

IP 2

IP 3

Phospholipase
C

Inositol IP

CDP-diacylglycerol Phosphatidic acid

+
Free download pdf