The Chemistry Maths Book, Second Edition

(Grace) #1

4.6 Differentiation by rule 105


EXAMPLE 4.12Product rule


The function


y 1 = 1 (2x 1 + 13 x


2

) 1 sin 1 x


is easily differentiated only by means of the product rule. Let y 1 = 1 uv where


u 1 = 1 (2x 1 + 13 x


2

)andv 1 = 1 sin 1 x. Then


= 1 (2x 1 + 13 x


2

) 1 cos 1 x 1 + 1 (2 1 + 16 x) 1 sin 1 x


0 Exercises 29–32


The quotient rule


By Rule 4 in Table 4.3,


EXAMPLE 4.13Differentiate


Lety 1 = 1 u 2 vwhereu 1 = 1 (2x 1 + 13 x


2

)andv 1 = 1 (5 1 + 17 x


3

). Then


0 Exercises 33–36


The chain rule (function of a function)


The polynomial


y 1 = 1 f(x) 1 = 1 (2x


2

1 − 1 1)


3

=


++−+






()()( )()


()


57 26 2 3 21


57


322

32

xxxxx


x


dy


dx


x


d


dx


xx xx


d


dx


=+ + − + +x



()()()()57 23 23 57


3223








()57+


32

x


y


xx


x


=










23


57


2

3

d


dx


udu


dx


u


d


v dx


v


v


v







=−








2

=+()sinsin()23+ 23 +


22

xx


d


dx


xx


d


dx


xx


dy


dx


u


d


dx


du


dx


=+


v


v

Free download pdf