The Chemistry Maths Book, Second Edition

(Grace) #1

4.6 Differentiation by rule 107


EXAMPLES 4.15The chain rule


(i) y 1 = 1 sin 12 x 1 = 1 sin 1 u, whereu 1 = 12 x


(ii)y 1 = 1 cos(2x


2

1 − 1 1) 1 = 1 cos 1 u, whereu 1 = 12 x


2

1 − 11


(iii) , whereu 1 = 12 x


2

1 − 11


(iv) y 1 = 1 ln(2x


2

1 − 1 1) 1 = 1 ln 1 u, whereu 1 = 12 x


2

1 − 11


(v)y 1 = 1 ln(sin 1 x) 1 = 1 ln 1 u, whereu 1 = 1 sin 1 x


0 Exercises 41–55


dy


dx


dy


du


du


dx u


x


x


x


=×=







 ==


1


(cos )


cos


cot


sin


xx


dy


dx


dy


du


du


dx u


x


x


x


=×=







×=



1


4


4


21


2

()


dy


dx


dy


du


du


dx


exxe


ux

=×= × =



()() 44


21

2

ye e


xu

==


21 −

2

dy


dx


dy


du


du


dx


=×=− × =−( sin ) ( )ux x x 4421 sin( −)


2

dy


dx


dy


du


du


dx


=×=(cos ) ( ) cosux×=22 2


Table 4.4 The chain rule


Type Function Derivative


power of uu


a

trigonometric sin 1 u


cos 1 u


tan 1 u


exponential e


u

logarithmic ln 1 u


1


u


du


dx


e


du


dx


u

sec


2

u


du


dx


−sinu


du


dx


cosu


du


dx


au


du


dx


a− 1
Free download pdf