The Chemistry Maths Book, Second Edition

(Grace) #1

114 Chapter 4Differentiation


For example,


n 1 = 1 3: f


(3)

(x) 1 = 1 f′′′(x) 1 = 1 −a


3

1 cos 1 ax


n 1 = 1 4: f


(4)

(x) 1 = 1 (−1)


2

a


4

1 sin 1 ax 1 = 1 a


4

1 sin 1 ax


0 Exercises 75 –77


The first derivativef′(x)of a functionf(x)is the rate of change of the function, or


the slope of its graph at point x. The second derivativef′′(x)is the rate of change of


slope, and is related to the curvature at x.


4.10 Stationary points


Consider the cubic (Figure 4.9)


y 1 = 1 x(x 1 − 1 3)


2

The function goes to±∞asx 1 → 1 ±∞, but the graph


shows that the function has a local maximumat


point A, atx 1 = 11 , where its value is greater than at


all neighbouring points. The function also has a


(local) minimumat point B, atx 1 = 13 , where its


value is smaller than at all neighbouring points.


Points of maximum and minimum value are called


turning points.


The determination of the maximum and mini-


mum values of a function is of importance in the


physical sciences because, for example, (i) equations of motion are often formulated


as ‘variation principles’, whereby solutions are obtained as maxima or minima of


some variational function (see Example 4.25), (ii) the fitting of a theoretical curve to


a set of experimental points can be expressed in terms of a ‘minimum deviation’


principle, as in the method of least squares discussed in Chapter 21.


Consider the curve in the neighbourhood of the maximum at point A in Figure 4.9.


To the left of A the gradient is positive and the value of the function is increasing. To


the right of A the gradient is negative and yis decreasing. At the point A itself the


function has zero gradient (the tangent to the curve is horizontal), and the rate of


change of ywith respect to xis zero. The point is called a stationary point, and the


value of the function at the point is called a stationary value. Similar considerations


apply for the minimum at B, and the general condition for a stationary point is that


the first derivative of the function be zero:


at a stationary point (4.20)


To distinguish between maximum and minimum values, it is necessary to consider


the second derivative. On moving through the maximum at A from left to right, the


dy


dx


= 0


1


2


3


4


.

..

...

..

.

..

...

..

.

..

...

..

.

..

...

..

.

...

..

..

.

...

..

..

.

...

..

..

.

...

..

..

.

...

..

..

.

...

..

..

.

...

..

..

.

...

..

..

.

...

..

..

.

...

..

..

.

...

...

.

..

...

..

.

..

...

..

.

..

...

..

.

..

...

..

.

...

..

..

.

...

..

..

.

...

..

..

.

...

O123


A


B


C


y


x














.......

...........

..........

..........

...........

..........

..........

...........

.........

..........

...........

..........

.........

...........

..........

..........

..........

..........

..........

...........

.........

..........

...........

.........

...........

..........

..........

...........

.........

..........

...........

..........

..........

...........

.........

..........

..........

...........

..........

..........

...........

..........

..........

...........

..........

...........

..........

..........

...........

.........

..........

...........

..........

.........

...........

..........

..........

...........

.........

..........

...........

..........

..........

...........

..........

..........

...........

..........

..........

............

..........

..........

...........

..........

..........

...........

..........

..........

...........

..........

.........

............

..........

..........

...........

..........

..........

............

...........

...........

...........

...........

..........

...........

...........

..........

............

..........

...........

.............

............

............

.............

.............

.............

.................

.....................

................................................

.....................

...................

...............

.............

...............

............

............

..............

............

...........

.............

...........

............

............

...........

...........

.............

...........

...........

............

...........

..........

............

...........

...........

............

...........

..........

............

...........

..........

............

...........

...........

...........

...........

...........

...........

...........

...........

...........

...........

..........

............

...........

..........

............

...........

..........

............

...........

..........

............

...........

...........

............

..........

...........

............

..........

...........

............

...........

...........

............

...........

...........

............

...........

...........

............

...........

............

............

............

...........

.............

............

............

..............

.............

.............

................

...............

..................

............................................................................

.................

..............

..............

............

............

..............

...........

...........

............

...........

..........

..........

............

..........

..........

............

...........

...........

Figure 4.9

Free download pdf