134 Chapter 5Integration
(iv)
(v)
(vi)
(vii)
0 Exercises 16–25
Average value of a function
Because the definite integral is identified as the area under the curve it follows from
equation (5.10) that the average value of the functiony 1 = 1 f(x)in the intervala 1 ≤ 1 x 1 ≤ 1 bis
(5.13)
EXAMPLE 5.5Find the average value ofsin 1 θin the interval 01 ≤ 1 θ 1 ≤ 1 π 22.
By Example 5.4(v),
0 Exercises 26–28
Three properties of the definite integral
Letf(x) 1 = 1 F′(x)so that, by equation (5.11),
1.The value of the integral does not depend on the symbol used for the variable of
integration:
(5.14)
In each case, the value of the integral isF(b) 1 − 1 F(a).
ZZZ
a
b
a
b
a
b
f x dx() == =f t dt() f u du()
Z
a
b
fxdx Fb Fa() =−() ()
sinθθ==sin θ
12
0
2
ππ
π
2
Z d
y
A
ba
fxdx
dx
a
b
a
b
=
−
=
Z
Z
()
Z
2
3
2
3
32
3
2
dx
x
= x
ln =− =ln ln ln
Z
−
+
−
−
+
−
−
=− =−
1
1
2
1
1
22
1
2
1
2
edt e e
tt
−
−− = −
1
2
1
2
222
eee
Z
0
2
0
2
2
π
π
π
sinθθd =−cosθ cos cos
=−
−− 0 00 11
()
=−−=() ( )
ZZ
a
b
a
b
a
b
dx==dx x b a
1 =−